Skip to content

nacayu/SAF-FCOS

Repository files navigation

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor

The full paper is available at: https://www.mdpi.com/1424-8220/20/4/956.

Arch

Alt text

Abstract:

For autonomous driving, it is important to detect obstacles in all scales accurately for safety consideration. In this paper, we propose a new spatial attention fusion (SAF) method for obstacle detection using mmWave radar and vision sensor, where the sparsity of radar points are considered in the proposed SAF. The proposed fusion method can be embedded in the feature-extraction stage, which leverages the features of mmWave radar and vision sensor effectively. Based on the SAF, an attention weight matrix is generated to fuse the vision features, which is different from the concatenation fusion and element-wise add fusion. Moreover, the proposed SAF can be trained by an end-to-end manner incorporated with the recent deep learning object detection framework. In addition, we build a generation model, which converts radar points to radar images for neural network training. Numerical results suggest that the newly developed fusion method achieves superior performance in public benchmarking. In addition, the source code will be released in the GitHub.

You should known

Please read the FCOS project first FCOS-README.md

Installation

Please check INSTALL.md for installation instructions.

Download Data

Version1: download from opendatalab(推荐)

opendatalab reference Alt text

Version2: download from official website

  1. Please download Full dataset (v1.0) of nuScenes dataset from the link

download

  1. Then, upload all download tar files to an ubuntu server, and uncompress all *.tar files in a specific folder:
mkdir ~/Data/nuScenes
mv AllDownloadTarFiles ~/Data/nuScenes
cd ~/Data/nuScenes
for f in *.tar; do tar -xvf "$f"; done

Generate Data

  1. Data: you should merge all 10 blobs and re-organize the dataset into the following format:

Alt text

  1. Convert the radar pcd file as image:
python tools/nuscenes/convert_radar_point.py --dataroot ~/Data/nuScenes

Alt text

  1. Calculate the norm info of radar images:
python tools/nuscenes/extract_pc_image_norm_info_from_image.py --datadir ~/Data/nuScenes --outdir ~/Data/nuScenes/v1.0-trainval
  1. Generate 2D detections results for nuScenes CAM_FRONT images by 'FCOS_imprv_dcnv2_X_101_64x4d_FPN_2x.pth',
    some of detection results should be refined by labelers to get tighter bboxes,
    and save the detection results as txt file in the folder ~/Data/nuScenes/fcos/CAM_FRONT:

detection1

detection2

The detection results are saved as '0, 1479.519, 611.043, 1598.754, 849.447'. The first column is category, and the last stands for position.
For convenience, we supply our generated 2D txt files in cloud drive and in folder data/fcos.zip.
For users not in China, please download from google drive.
For users in China, please download from baidu drive.

链接:https://pan.baidu.com/s/11NNYpmBbs5sSqSsFxl-z7Q 
提取码:6f1x 

If you use our generated txt files, please:

mv fcos.zip ~/Data/nuScenes
unzip fcos.zip
  1. Generate 2D annotations in coco style for model training and test:
python tools/nuscenes/generate_2d_annotations_by_fcos.py --datadir ~/Data/nuScenes --outdir ~/Data/nuScenes/v1.0-trainval

Final data architecture

Alt text

Home/naca/Data
├── nuScenes/
|   |——fcos/
|   |——imagepc_01/
|   |   |——RADAR_FRONT/
|   |   |  |——*json
|   |   |  |——*.png
|   |——imagepc_03/
|   |   |——RADAR_FRONT/
|   |   |  |——*json
|   |   |  |——*.png
|...
|   |——pc/
|   |   |——RADAR_FRONT/
|   |   |  |——*.pcd
|   |——json/
|   |   |——CAM_FRONT/
|   |   |  |——*.json
│   │   ├── maps/
│   │   ├── samples/
│   │   ├── sweeps/
│   │   ├── v1.0-mini/
|   |   ├── v1.0-trainval/
|   |   | ├── *.json
|   |   | ├── gt_fcos_coco_train.json
|   |   | ├── gt_fcos_coco_val.json
|   |   | ├── image_pc_annotations.json
|   |   | ├── norm_info/
|  |    |   ├── norm_param_gt_fcos_coco_train_03.json
|  |    |   ├── norm_param_gt_fcos_coco_train_05.json
|  |    |   ├── norm_param_gt_fcos_coco_train_07.json
|  |    |   ├── norm_param_gt_fcos_coco_train_09.json
|———————————|—— norm_param_gt_fcos_coco_train_11.json

Some key files' screen shot

  • image_pc_annotations.json

Alt text

  • /norm_info/*.json

Alt text

Prepare training

The following command line will train fcos_imprv_R_50_FPN_1x_ATTMIX_135_Circle_07.yaml on 2 GPUs with Synchronous Stochastic Gradient Descent (SGD):

python -m torch.distributed.launch \
       --nproc_per_node=2 \
       --master_port=$((RANDOM + 10000)) \
       tools/train_net.py \
       --config-file configs/fcos_nuscenes/fcos_imprv_R_50_FPN_1x_ATTMIX_135_Circle_07.yaml \
       DATALOADER.NUM_WORKERS 2 \
       OUTPUT_DIR tmp/fcos_imprv_R_50_FPN_1x

Network Architecture

Radar branch

Alt text

Image branch & Fusion branch

Alt text

make_fcos_loss_evaluator

Alt text

Alt text

Prepare Test

Checkpoints

  • You should download checkpoints and move to your_project/ckpts
  1. fcos_imprv_R_50_FPN_1x_ATTMIX_135_Circle_07.yaml, 提取码:bp0h, followings are checkpoints performance log:
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.662
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.894
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.728
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.484
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.649
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.775
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.125
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.616
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.739
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.602
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.735
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.822
Maximum f-measures for classes:
[0.837035054856837]
Score thresholds for classes (used in demos for visualization purposes):
[0.5025295615196228]
2023-06-28 08:26:46,891 fcos_core.inference INFO: OrderedDict([('bbox', OrderedDict([('AP', 0.6622987526290007), ('AP50', 0.893780659927815), ('AP75', 0.7280925007150355), ('APs', 0.48447696873607443), ('APm', 0.6485033130717023), ('APl', 0.7745259549635619)]))])
INFO:fcos_core.inference:OrderedDict([('bbox', OrderedDict([('AP', 0.6622987526290007), ('AP50', 0.893780659927815), ('AP75', 0.7280925007150355), ('APs', 0.48447696873607443), ('APm', 0.6485033130717023), ('APl', 0.7745259549635619)]))])

The following command line will test fcos_imprv_R_50_FPN_1x_ATTMIX_135_Circle_07 on 2 GPUs:

python -m torch.distributed.launch \
       --nproc_per_node=2  
       --master_port=$((RANDOM + 10000)) \
       tools/test_epoch.py \
       --config-file configs/fcos_nuscenes/fcos_imprv_R_50_FPN_1x_ATTMIX_135_Circle_07.yaml \
       --checkpoint-file ckpts/fcos_imprv_R_50_FPN_1x_ATTMIX_135_Circle_07.pth \ 
       OUTPUT_DIR tmp/fcos_imprv_R_50_FPN_1x_ATTMIX_135_Circle_07

Test pipeline

Alt text

Visualization pipeline

  • let us setting visualization data path in visualize_detection_results.py
  • run visualization script
python tools/visualize_detection_results.py

Citations

Please consider citing our paper and FOCS in your publications if the project helps your research. BibTeX reference is as follows.

About

Reproduction of the official SAF-FCOS repo.

Resources

License

Stars

Watchers

Forks

Packages

No packages published