Skip to content

Commit

Permalink
Add unit tests for KinetoOperator methods
Browse files Browse the repository at this point in the history
  • Loading branch information
TaekyungHeo committed Jul 11, 2024
1 parent 8bc32ca commit f193766
Show file tree
Hide file tree
Showing 2 changed files with 139 additions and 18 deletions.
36 changes: 18 additions & 18 deletions src/trace_link/kineto_operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,6 +105,24 @@ def is_cuda_driver_op(self) -> bool:
"""
return self.category == "cuda_driver"

def is_ac2g_op(self) -> bool:
"""
Check if the operator is categorized as 'ac2g', which stands for arrows from CPU to GPU.
Excerpt from https://pytorch.org/docs/stable/torch.compiler_profiling_torch_compile.html
```
Every kernel on the GPU occurs after being launched by code running on the CPU. The profiler can draw
connections (i.e. "flows") between the GPU and CPU events to show which CPU event launched a GPU kernel.
This is particularly helpful because, with a few exceptions, GPU kernels are launched asynchronously.
To view a flow connection, click on a GPU kernel and click "ac2g".
````
Returns
bool: True if the operator is an 'ac2g' type, otherwise False.
"""
return self.category == "ac2g"

def is_kernel_launch_op(self) -> bool:
"""
Determine whether the operator is a kernel-launching CUDA runtime operator.
Expand Down Expand Up @@ -135,21 +153,3 @@ def is_gpu_op(self) -> bool:
"""
gpu_categories = {"kernel", "gpu_memcpy"}
return self.category in gpu_categories

def is_ac2g_op(self) -> bool:
"""
Check if the operator is categorized as 'ac2g', which stands for arrows from CPU to GPU.
Excerpt from https://pytorch.org/docs/stable/torch.compiler_profiling_torch_compile.html
```
Every kernel on the GPU occurs after being launched by code running on the CPU. The profiler can draw
connections (i.e. "flows") between the GPU and CPU events to show which CPU event launched a GPU kernel.
This is particularly helpful because, with a few exceptions, GPU kernels are launched asynchronously.
To view a flow connection, click on a GPU kernel and click "ac2g".
````
Returns
bool: True if the operator is an 'ac2g' type, otherwise False.
"""
return self.category == "ac2g"
121 changes: 121 additions & 0 deletions tests/trace_link/test_kineto_operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,103 @@ def test_repr_method(sample_operator_data):
assert repr(operator) == expected_repr


@pytest.mark.parametrize(
"category, expected",
[
("cpu_op", True),
("user_annotation", True),
("ProfilerStep", False),
("cuda_runtime", False),
("cuda_driver", False),
],
)
def test_is_cpu_op(category, expected):
"""Test the is_cpu_op method with various inputs."""
operator_data = {
"cat": category,
"name": "someOperation",
"ph": "X",
"dur": 100,
"ts": 1590000000,
"tid": 1234,
"args": {"External id": "123", "Ev Idx": "456", "stream": 7, "Record function id": 12, "correlation": 99},
}
operator = KinetoOperator(operator_data)
assert operator.is_cpu_op() == expected


@pytest.mark.parametrize(
"category, expected",
[
("cuda_runtime", True),
("kernel", False),
("cuda_driver", False),
("cpu_op", False),
],
)
def test_is_cuda_runtime_op(category, expected):
"""Test the is_cuda_runtime_op method with various inputs."""
operator_data = {
"cat": category,
"name": "someOperation",
"ph": "X",
"dur": 100,
"ts": 1590000000,
"tid": 1234,
"args": {"External id": "123", "Ev Idx": "456", "stream": 7, "Record function id": 12, "correlation": 99},
}
operator = KinetoOperator(operator_data)
assert operator.is_cuda_runtime_op() == expected


@pytest.mark.parametrize(
"category, expected",
[
("cuda_driver", True),
("kernel", False),
("cuda_runtime", False),
("cpu_op", False),
],
)
def test_is_cuda_driver_op(category, expected):
"""Test the is_cuda_driver_op method with various inputs."""
operator_data = {
"cat": category,
"name": "someOperation",
"ph": "X",
"dur": 100,
"ts": 1590000000,
"tid": 1234,
"args": {"External id": "123", "Ev Idx": "456", "stream": 7, "Record function id": 12, "correlation": 99},
}
operator = KinetoOperator(operator_data)
assert operator.is_cuda_driver_op() == expected


@pytest.mark.parametrize(
"category, expected",
[
("ac2g", True),
("kernel", False),
("cuda_runtime", False),
("cpu_op", False),
],
)
def test_is_ac2g_op(category, expected):
"""Test the is_ac2g_op method with various inputs."""
operator_data = {
"cat": category,
"name": "someOperation",
"ph": "X",
"dur": 100,
"ts": 1590000000,
"tid": 1234,
"args": {"External id": "123", "Ev Idx": "456", "stream": 7, "Record function id": 12, "correlation": 99},
}
operator = KinetoOperator(operator_data)
assert operator.is_ac2g_op() == expected


@pytest.mark.parametrize(
"category, name, expected",
[
Expand Down Expand Up @@ -84,3 +181,27 @@ def test_is_kernel_launch_op(category, name, expected):
}
operator = KinetoOperator(operator_data)
assert operator.is_kernel_launch_op() == expected


@pytest.mark.parametrize(
"category, expected",
[
("kernel", True),
("gpu_memcpy", True),
("cuda_runtime", False),
("cpu_op", False),
],
)
def test_is_gpu_op(category, expected):
"""Test the is_gpu_op method with various inputs."""
operator_data = {
"cat": category,
"name": "someOperation",
"ph": "X",
"dur": 100,
"ts": 1590000000,
"tid": 1234,
"args": {"External id": "123", "Ev Idx": "456", "stream": 7, "Record function id": 12, "correlation": 99},
}
operator = KinetoOperator(operator_data)
assert operator.is_gpu_op() == expected

0 comments on commit f193766

Please sign in to comment.