Skip to content

mi2rl/MuSiC-ViT

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MuSiC-ViT: Multi-task Siamese Convolutional Vision Transformer for Differentiating Change or No-change of Follow-Up Chest X-Rays


Figure_final_main

Directory Architecture

Root

|---------- train.json (You have to create yourself.)

|---------- test.json (You have to create yourself.)

|---------- config.py

|---------- datasets.py

|---------- README.md

|---------- test.py

|---------- train.py

|---------- utils.py

|---------- runs (if you run the train code, it will be made automatically)

|---------- checkpoints (if you run the train code, it will be made automatically)

Train

CUDA_VISIBLE_DEVICES=0 python train.py --msg=train--aug True --lr 6e-5 --batch_size=20 --print_freq=300 --backbone CMT_Ti

Test

CUDA_VISIBLE_DEVICES=0 python test.py --msg=test --batch_size=6 --pretrained checkpoints/2022-08-25_163910_MuSiC_ViT/174048.pth --backbone CMT_Ti

MuSiC-ViT weight link: https://drive.google.com/drive/folders/1TZYdh4ERKBXa_-OH0LWxofGAsGWDc3_H?usp=sharing

CheXpert dataset link: https://drive.google.com/drive/folders/1wD_LI0mPlQWNWS47L44w2guuk4aHNmw-?usp=sharing

Results

The results compared to other various model architectures are shown in the table below.

Model architecture Param (M) Training (h) / Testing (s) Internal validation dataset External validation dataset 1 External validation dataset 2
SPE   SEN   ACC   AUC SPE   SEN   ACC   AUC SPE   SEN   ACC   AUC
CNN Inception-v3 22.84M 31h / 36s 0.790   0.568   0.679   0.732 0.884   0.265   0.574   0.665 0.866   0.449   0.659   0.723
ResNet-50 24.55M 36h / 24s 0.806   0.564   0.685   0.749 0.902   0.279   0.591   0.639 0.828   0.453   0.642   0.721
DenseNet-121 7.48M 32h / 46s 0.752   0.595   0.674   0.722 0.828   0.363   0.595   0.662 0.869   0.532   0.702   0.758
EfficientNet-b3 11.49M 29h / 44s 0.790   0.557   0.674   0.741 0.888   0.270   0.579   0.655 0.884   0.506   0.696   0.655
EfficientNet-v2 21.23M 49h / 48s 0.736   0.594   0.665   0.712 0.726   0.437   0.581   0.649 0.866   0.543   0.705   0.760
ConvNeXt 28.59M 67h / 29s 0.751   0.544   0.648   0.699 0.833   0.400   0.616   0.689 0.914   0.415   0.666   0.736
Transformer ViT-B 88.28M 33h / 17s 0.816   0.448   0.632   0.677 0.902   0.200   0.551   0.618 0.978  0.102   0.542   0.633
Swin-v2 28.35M 54h / 37s 0.665   0.611   0.638   0.692 0.842   0.369   0.595   0.637 0.892   0.433   0.664   0.742
MLP-Mixer 32.18M 52h / 24s 0.706   0.656   0.681   0.727 0.754  0.516  0.653   0.660 0.787   0.521   0.655   0.705
ResMLP 20.21M 56h / 16s 0.704   0.649   0.677   0.724 0.707   0.414   0.561   0.609 0.758   0.411   0.585   0.617
CoaT 11.01M 42h / 38s 0.709   0.651   0.680   0.734 0.795   0.335   0.565   0.609 0.724   0.555   0.640   0.698
CMT-Ti 31.62M 29h / 59s 0.721  0.682  0.701   0.762 0.795   0.488  0.642  0.674 0.772  0.626  0.700   0.757
MuSiC-ViT (ours) 31.81M 39h / 70s 0.817  0.638  0.728   0.797 0.930  0.298   0.614  0.784 0.899   0.589  0.745   0.858

*Note: number of model parameters (Param);specificity (SPE); sensitivity (SEN); accuracy (ACC); area under receiver operating characteristics curve (AUC); million (M); hours (h); seconds (s)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%