This MI2RLNet is the hub of pretrained models in the medical domain.
We hope MI2RLNet helps your downstream task.
-
Organizing Team : MI2RL, Asan Medical Center(AMC), Seoul, Republic of Korea
-
Contributor
-
Commiter : Kyuri Kim, Jiyeon Seo, Jooyoung Park, Mingyu Kim, Kyungjin Cho, Daeun Kim, Yujin Nam.
-
Reviewer : Sungman Cho, Sungchul Kim.
-
Data Maintainer : Miso Jang, Namkug Kim.
-
-
Docker images
-
Dockerfille : tensorflow > 2.x, Pytorch 1.x
-
Modality | Part | Module | Data Reference |
---|---|---|---|
X-ray | Chest | L/R Mark Detection | AMC |
X-ray | Chest | PA / Lateral /Others Classification | AMC |
CT | Chest | Enhanced / Non-Enhanced Classification | AMC |
CT | Chest | Lung Segmentation | AMC |
CT | Abdomen | Kidnet & Tmuor Segmentation | KiTS 2019 |
CT | Abdomen | Liver Segmentation | AMC, LiTS 2017 |
Endoscopy | Abdomen | Polyp Detection | Kvsair-SEG |
MR | Brain | Brain Extraction | AMC |
MR | Brain | Blackblood Segmentation | AMC |
Modality | Part | Module | Results | Wiki | Weights | Framework |
---|---|---|---|---|---|---|
X-ray | Chest | L/R Mark Detection | 0.99 (mAP) | link | link | TF 2.x |
X-ray | Chest | PA / Lateral / Others Classification | 0.94 (Acc, external) | link | link | TF 2.x |
CT | Chest | Enhanced / Non-Enhanced Classification | 0.96 (Acc, external) | link | link | TF 2.x |
CT | Chest | Lung Segmentation | 0.98 (DSC) | - | link | TF 2.x |
CT | Abdomen | Kidney & Tumor Segmentation | 0.83 (DSC) | link | link | TF 2.x |
CT | Abdomen | Liver Segmentation | 0.97 (DSC) | link | link | TF 2.x |
Endoscopy | Abdomen | Polyp Detection | 0.70 (DSC) | link | link | Pytorch |
MR | Brain | MRI/MRA BET (Brain Extration Tool) | 0.95 (DSC) | link | MRI MRA | Pytorch |
MR | Brain | Blackblood Segmentation | 0.83 (DSC) | link | link | TF 2.x |
- The example code below applies to almost all modules. Some modules may require additional parameters.
from medimodule.Abdomen import LiverSegmentation
# Initialize the model.
# If pre-trained weight exists, enter it together when the model is assigned.
model = LiverSegmentation("/path/of/weight")
# Get a result.
# If you want to save the result, enter it with `save_path` kwargs.
image, mask = model.predict("/path/of/image", save_path="/path/for/save")
# Import any module you want to fine-tune.
from medimodule.Abdomen import LiverSegmentation
# Initialize the model with pre-trained weight.
model = LiverSegmentation("/path/of/weight")
# Construct your custom training code.
...
model.train()
...
If you'd like to contribute, or have any suggestions for these guidelines, you can contact us at [email protected] or open an issue on this GitHub repository.
All contributions welcome! All content in this repository is licensed under the Apache 2.0 license.