Skip to content

mchiquier/musclesinaction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

61 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Muscles in Action (ICCV 2023)

Code and pre-trained models for the Muscles in Action ICCV 2023 paper.

Setup

Environment:

  1. Install a new conda environment:
$ conda create --name musclesinaction --file requirements.txt
  1. Activate environment:
$ conda activate musclesinaction

Dataset:

The dataset can be found at this link: https://musclesinaction.cs.columbia.edu/MIADataset.tar. Download it, and place the folder in the same directory as the top-level musclesinaction folder.

Training

To train your own model, run the following command below. By default, it pulls from the musclesinaction/configs/train.yaml file.

$ python musclesinaction/train.py

The default is to train a pose-to-emg model, defined with 'predemg=True'. To train an emg-to-pose model, simply set it to False.

The config file also specifies the information for what data the model is being trained on, as well as where checkpoints are saved, etc. Update it for your goals.

Inference

The 'musclesinaction/inference_commands' folder has many different scripts to evaluate our model and baselines, per exercise and per person, for both in-distribution and out-of-distribution experiments.

For instance, to evaluate the emg-to-pose model per exercise, in-distribution, with our model, you would run the following command:

$ python musclesinaction/inference_commands/emgtopose/command_id_cond_exercises_transf_emgtopose.py

This will open a tmux session per exercise, and prints the error on the test set for that exercise.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published