Task | No of samples | No of Classes | Results |
---|---|---|---|
Audio Classical Composer Identification | 2772 | 11 | |
Audio US Pop Music Genre Classification | 7000 | 10 | |
Audio Latin Music Genre Classification | 3227 | 10 | |
Audio Music Mood Classification | 600 | 5 | Team AS4 |
Audio K-POP Mood Classification | 1438 | 5 | Team AS5 |
Audio K-POP Genre Classification | 1894 | 7 |
- Python >= 3.6
- Python packages:
- librosa, numpy, pandas, joblib, tqdm, sklearn, albumentations, runstats
- PyTorch >= 1.1
Use the provided packaged archive (created using conda-pack, and the file is available in the releases page):
mkdir -p mirex
tar -xzf mirex.tar.gz -C mirex
source mirex/bin/activate
conda-unpack
Or, create a new conda environment using the provided environment.yml file:
conda create -f environment.yml
python generate_sample_data.py -d data/ -i data/sample.wav
python extract_features.py -s /home/scratch -i data/features_extraction.txt -n 4
python train.py -s /home/scratch -i data/train.txt -n 4 -t kpop_mood
python classify.py -s /home/scratch -i data/test.txt -o test_preds.txt -n 4 -t kpop_mood
- 4 threads ~ 5 min
- ~ 1.5 GB memory for extracted features # maychange with parameters