Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CONCH encoder embedding #290

Open
niuhulu-rui opened this issue Dec 19, 2024 · 1 comment
Open

CONCH encoder embedding #290

niuhulu-rui opened this issue Dec 19, 2024 · 1 comment

Comments

@niuhulu-rui
Copy link

I want to use the CONCH encoder, and I used the following script:

CUDA_VISIBLE_DEVICES=0 python main.py --drop_out 0.25 --early_stopping --lr 2e-4 --k 10 --exp_code task_1_tumor_vs_normal_CLAM_conch_sb --weighted_sample --bag_loss ce --inst_loss svm --task task_1_tumor_vs_normal --model_type clam_sb --log_data --data_root_dir features_conch/ --embed_dim 512

Why is the following error occurring?

Load Dataset
label column: label
label dictionary: {'normal': 0, 'tumor': 1}
number of classes: 2
slide-level counts:
label
1 44
0 34
Name: count, dtype: int64
Patient-LVL; Number of samples registered in class 0: 34
Slide-LVL; Number of samples registered in class 0: 34
Patient-LVL; Number of samples registered in class 1: 44
Slide-LVL; Number of samples registered in class 1: 44
split_dir: splits/task_1_tumor_vs_normal_100
################# Settings ###################
num_splits: 10
k_start: -1
k_end: -1
task: task_1_tumor_vs_normal
max_epochs: 200
results_dir: ./results
lr: 0.0002
experiment: task_1_tumor_vs_normal_CLAM_conch_sb
reg: 1e-05
label_frac: 1.0
bag_loss: ce
seed: 1
model_type: clam_sb
model_size: small
use_drop_out: 0.25
weighted_sample: True
opt: adam
bag_weight: 0.7
inst_loss: svm
B: 8
split_dir: splits/task_1_tumor_vs_normal_100

Training Fold 0!

Init train/val/test splits...
Done!
Training on 64 samples
Validating on 7 samples
Testing on 7 samples

Init loss function... Done!

Init Model... Setting tau to 1.0
Done!
CLAM_SB(
(attention_net): Sequential(
(0): Linear(in_features=512, out_features=512, bias=True)
(1): ReLU()
(2): Dropout(p=0.25, inplace=False)
(3): Attn_Net_Gated(
(attention_a): Sequential(
(0): Linear(in_features=512, out_features=256, bias=True)
(1): Tanh()
(2): Dropout(p=0.25, inplace=False)
)
(attention_b): Sequential(
(0): Linear(in_features=512, out_features=256, bias=True)
(1): Sigmoid()
(2): Dropout(p=0.25, inplace=False)
)
(attention_c): Linear(in_features=256, out_features=1, bias=True)
)
)
(classifiers): Linear(in_features=512, out_features=2, bias=True)
(instance_classifiers): ModuleList(
(0-1): 2 x Linear(in_features=512, out_features=2, bias=True)
)
(instance_loss_fn): SmoothTop1SVM()
)
Total number of parameters: 528647
Total number of trainable parameters: 528647

Init optimizer ... Done!

Init Loaders... Done!

Setup EarlyStopping... Done!

Traceback (most recent call last):
File "/data2/project/CLAM-master/main.py", line 213, in
results = main(args)
File "/data2/project/CLAM-master/main.py", line 52, in main
results, test_auc, val_auc, test_acc, val_acc = train(datasets, i, args)
File "/data2/project/CLAM-master/utils/core_utils.py", line 185, in train
train_loop_clam(epoch, model, train_loader, optimizer, args.n_classes, args.bag_weight, writer, loss_fn)
File "/data2/project/CLAM-master/utils/core_utils.py", line 237, in train_loop_clam
logits, Y_prob, Y_hat, _, instance_dict = model(data, label=label, instance_eval=True)
File "/data2/anaconda3/envs/clam_lateat/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/data2/anaconda3/envs/clam_lateat/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/data2/project/CLAM-master/models/model_clam.py", line 139, in forward
A, h = self.attention_net(h) # NxK
File "/data2/anaconda3/envs/clam_lateat/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/data2/anaconda3/envs/clam_lateat/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/data2/anaconda3/envs/clam_lateat/lib/python3.10/site-packages/torch/nn/modules/container.py", line 219, in forward
input = module(input)
File "/data2/anaconda3/envs/clam_lateat/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/data2/anaconda3/envs/clam_lateat/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/data2/anaconda3/envs/clam_lateat/lib/python3.10/site-packages/torch/nn/modules/linear.py", line 117, in forward
return F.linear(input, self.weight, self.bias)
RuntimeError: mat1 and mat2 shapes cannot be multiplied (1628x1024 and 512x512)

@his0car
Copy link

his0car commented Jan 3, 2025

No, you have used either Resnet50 or UNI to encode, as CONCH is the only one using a 512 dimensional embedding.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants