Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Da kzg rs #74

Closed
wants to merge 8 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
197 changes: 197 additions & 0 deletions da/kzg_rs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,197 @@
from itertools import batched
from typing import List, Sequence

import eth2spec.eip7594.minimal
from eth2spec.eip7594.mainnet import (
bit_reversal_permutation,
KZG_SETUP_G1_LAGRANGE,
KZG_ENDIANNESS,
Polynomial,
BYTES_PER_FIELD_ELEMENT,
bytes_to_bls_field,
BLSFieldElement,
compute_roots_of_unity,
verify_kzg_proof_impl,
KZGCommitment as Commitment,
KZGProof as Proof,
BLS_MODULUS, div, bls_modular_inverse, KZG_SETUP_G2_MONOMIAL
)
from eth2spec.utils import bls
from remerkleable.basic import uint64
from contextlib import contextmanager

from da.common import Chunk


@contextmanager
def setup_field_elements(new_value: int):
"""
Override ethspecs setup to fit the variable sizes for our scheme
"""
field_elements_old_value = eth2spec.eip7594.mainnet.FIELD_ELEMENTS_PER_BLOB
minimal_field_elements_old_value = eth2spec.eip7594.minimal.FIELD_ELEMENTS_PER_BLOB
eth2spec.eip7594.mainnet.FIELD_ELEMENTS_PER_BLOB = new_value
eth2spec.eip7594.minimal.FIELD_ELEMENTS_PER_BLOB = new_value
setup_old_value = eth2spec.eip7594.mainnet.KZG_SETUP_G1_LAGRANGE
eth2spec.eip7594.mainnet.KZG_SETUP_G1_LAGRANGE = eth2spec.eip7594.mainnet.KZG_SETUP_G1_LAGRANGE[:new_value]
yield
eth2spec.eip7594.mainnet.FIELD_ELEMENTS_PER_BLOB = field_elements_old_value
eth2spec.eip7594.minimal.FIELD_ELEMENTS_PER_BLOB = minimal_field_elements_old_value
eth2spec.eip7594.mainnet.KZG_SETUP_G1_LAGRANGE = setup_old_value

class Polynomial(List[BLSFieldElement]):
pass


def g1_lincomb(points: Sequence[Commitment], scalars: Sequence[BLSFieldElement]) -> Commitment:
"""
BLS multiscalar multiplication. This function can be optimized using Pippenger's algorithm and variants.
"""
# we assert to have more points available than elements,
# this is dependent on the available kzg setup size
assert len(points) >= len(scalars)
result = bls.Z1()
for x, a in zip(points, scalars):
result = bls.add(result, bls.multiply(bls.bytes48_to_G1(x), a))
return Commitment(bls.G1_to_bytes48(result))


def bytes_to_polynomial(b: bytearray) -> Polynomial:
"""
Convert bytes to list of BLS field scalars.
"""
assert len(b) % BYTES_PER_FIELD_ELEMENT == 0
return Polynomial(bytes_to_bls_field(b) for b in batched(b, int(BYTES_PER_FIELD_ELEMENT)))


def __evaluate_polynomial_in_evaluation_form(
polynomial: Polynomial,
z: BLSFieldElement,
roots_of_unity: Sequence[BLSFieldElement]) -> BLSFieldElement:
"""
Evaluate a polynomial (in evaluation form) at an arbitrary point ``z``.
- When ``z`` is in the domain, the evaluation can be found by indexing the polynomial at the
position that ``z`` is in the domain.
- When ``z`` is not in the domain, the barycentric formula is used:
f(z) = (z**WIDTH - 1) / WIDTH * sum_(i=0)^WIDTH (f(DOMAIN[i]) * DOMAIN[i]) / (z - DOMAIN[i])
"""
width = len(polynomial)
inverse_width = bls_modular_inverse(BLSFieldElement(width))

# If we are asked to evaluate within the domain, we already know the answer
if z in roots_of_unity:
eval_index = roots_of_unity.index(z)
return BLSFieldElement(polynomial[eval_index])

result = 0
for i in range(width):
a = BLSFieldElement(int(polynomial[i]) * int(roots_of_unity[i]) % BLS_MODULUS)
b = BLSFieldElement((int(BLS_MODULUS) + int(z) - int(roots_of_unity[i])) % BLS_MODULUS)
result += int(div(a, b) % BLS_MODULUS)
result = result * int(BLS_MODULUS + pow(z, width, BLS_MODULUS) - 1) * int(inverse_width)
return BLSFieldElement(result % BLS_MODULUS)


def __compute_quotient_eval_within_domain(z: BLSFieldElement,
polynomial: Polynomial,
y: BLSFieldElement,
roots_of_unity: Sequence[BLSFieldElement]
) -> BLSFieldElement:
"""
Given `y == p(z)` for a polynomial `p(x)`, compute `q(z)`: the KZG quotient polynomial evaluated at `z` for the
special case where `z` is in roots of unity.

For more details, read https://dankradfeist.de/ethereum/2021/06/18/pcs-multiproofs.html section "Dividing
when one of the points is zero". The code below computes q(x_m) for the roots of unity special case.
"""
result = 0
for i, omega_i in enumerate(roots_of_unity):
if omega_i == z: # skip the evaluation point in the sum
continue

f_i = int(BLS_MODULUS) + int(polynomial[i]) - int(y) % BLS_MODULUS
numerator = f_i * int(omega_i) % BLS_MODULUS
denominator = int(z) * (int(BLS_MODULUS) + int(z) - int(omega_i)) % BLS_MODULUS
result += int(div(BLSFieldElement(numerator), BLSFieldElement(denominator)))

return BLSFieldElement(result % BLS_MODULUS)


def bytes_to_kzg_commitment(b: bytearray) -> Commitment:
return g1_lincomb(
bit_reversal_permutation(KZG_SETUP_G1_LAGRANGE), bytes_to_polynomial(b)
)


def _compute_single_proof(
polynomial: Polynomial,
roots_of_unity: Sequence[BLSFieldElement],
index: int
) -> Proof:
"""
Helper function for `compute_kzg_proof()` and `compute_blob_kzg_proof()`.
"""

# For all x_i, compute p(x_i) - p(z)
u = roots_of_unity[index]
y = BLSFieldElement(polynomial[index])
# y = __evaluate_polynomial_in_evaluation_form(polynomial, u, roots_of_unity)
polynomial_shifted = [BLSFieldElement((int(p) - int(y)) % BLS_MODULUS) for p in polynomial]

# For all x_i, compute (x_i - z)
denominator_poly = [BLSFieldElement((int(x) - int(u)) % BLS_MODULUS) for x in roots_of_unity]

# Compute the quotient polynomial directly in evaluation form
quotient_polynomial = [BLSFieldElement(0)] * len(polynomial)
for i, (a, b) in enumerate(zip(polynomial_shifted, denominator_poly)):
if b == 0:
# The denominator is zero hence `z` is a root of unity: we must handle it as a special case
quotient_polynomial[i] = __compute_quotient_eval_within_domain(roots_of_unity[i], polynomial, y, roots_of_unity)
else:
# Compute: q(x_i) = (p(x_i) - p(z)) / (x_i - z).
quotient_polynomial[i] = div(a, b)

return Proof(g1_lincomb(bit_reversal_permutation(KZG_SETUP_G1_LAGRANGE), quotient_polynomial))


def compute_kzg_proofs(b: bytearray) -> List[Proof]:
assert len(b) % BYTES_PER_FIELD_ELEMENT == 0
polynomial = bytes_to_polynomial(b)
roots_of_unity_brp = bit_reversal_permutation(compute_roots_of_unity(uint64(len(polynomial))))
return [
_compute_single_proof(polynomial, roots_of_unity_brp, i)
for i in range(len(b)//BYTES_PER_FIELD_ELEMENT)
]

def __verify_kzg_proof_impl(commitment: Commitment,
z: BLSFieldElement,
y: BLSFieldElement,
proof: Proof) -> bool:
"""
Verify KZG proof that ``p(z) == y`` where ``p(z)`` is the polynomial represented by ``polynomial_kzg``.
"""
# Verify: P - y = Q * (X - z)
X_minus_z = bls.add(
bls.bytes96_to_G2(KZG_SETUP_G2_MONOMIAL[1]),
bls.multiply(bls.G2(), (BLS_MODULUS - z) % BLS_MODULUS),
)
P_minus_y = bls.add(bls.bytes48_to_G1(commitment), bls.multiply(bls.G1(), (BLS_MODULUS - y) % BLS_MODULUS))
return bls.pairing_check([
[P_minus_y, bls.neg(bls.G2())],
[bls.bytes48_to_G1(proof), X_minus_z]
])


def verify_single_proof(polynomial: Polynomial, proof: Proof, commitment: Commitment, index: int, roots_of_unity: Sequence[BLSFieldElement]) -> bool:
u = roots_of_unity[index]
y = __evaluate_polynomial_in_evaluation_form(polynomial, u, roots_of_unity)
return __verify_kzg_proof_impl(commitment, u, y, proof)


def verify_proofs(b: bytearray, commitment: Commitment, proofs: Sequence[Proof]) -> bool:
polynomial = bytes_to_polynomial(b)
roots_of_unity_brp = bit_reversal_permutation(compute_roots_of_unity(uint64(len(polynomial))))
return all(
verify_single_proof(polynomial, proof, commitment, i, roots_of_unity_brp)
for i, proof in enumerate(proofs)
)
64 changes: 64 additions & 0 deletions da/test_kzg_rs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
from itertools import chain
from random import randrange
from unittest import TestCase
from da.kzg_rs import (
Polynomial,
bytes_to_polynomial,
bytes_to_kzg_commitment,
compute_kzg_proofs,
verify_proofs, setup_field_elements
)
from eth2spec.eip7594.mainnet import (
Polynomial as EthPolynomial,
blob_to_polynomial,
BLS_MODULUS,
BYTES_PER_FIELD_ELEMENT,
FIELD_ELEMENTS_PER_BLOB,
Blob,
blob_to_kzg_commitment
)


class TestKzgRs(TestCase):

@staticmethod
def rand_bytes(size=FIELD_ELEMENTS_PER_BLOB):
return bytearray(
chain.from_iterable(
int.to_bytes(randrange(BLS_MODULUS), length=BYTES_PER_FIELD_ELEMENT)
for _ in range(size)
)
)

def test_bytes_to_polynomial(self):
rand_bytes = self.rand_bytes()
eth_poly = blob_to_polynomial(Blob(rand_bytes))
poly = bytes_to_polynomial(rand_bytes)
self.assertEqual(eth_poly, poly)

def test_bytes_to_kzg_commitment(self):
rand_bytes = self.rand_bytes()
eth_commitment = blob_to_kzg_commitment(Blob(rand_bytes))
commitment = bytes_to_kzg_commitment(rand_bytes)
self.assertEqual(eth_commitment, commitment)

def test_small_bytes_kzg_commitment(self):
rand_bytes = bytearray(int.to_bytes(randrange(BLS_MODULUS), length=BYTES_PER_FIELD_ELEMENT))
commitment = bytes_to_kzg_commitment(rand_bytes)
rand_bytes = self.rand_bytes()
commitment2 = bytes_to_kzg_commitment(rand_bytes)
self.assertEqual(len(commitment), 48)
self.assertEqual(len(commitment), len(commitment2))

def test_compute_kzg_proofs(self):
chunks_count = 32
rand_bytes = self.rand_bytes(chunks_count)
proofs = compute_kzg_proofs(rand_bytes)
self.assertEqual(len(proofs), chunks_count)

def test_verify_kzg_proofs(self):
chunks_count = 1
rand_bytes = self.rand_bytes(chunks_count)
commitment = bytes_to_kzg_commitment(rand_bytes)
proofs = compute_kzg_proofs(rand_bytes)
self.assertTrue(verify_proofs(rand_bytes, commitment, proofs))
Loading