forked from slancast/fiber
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGeneralizedRTernaryMetadataLoop.R
72 lines (64 loc) · 2.99 KB
/
GeneralizedRTernaryMetadataLoop.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#GenRTernary
rna_df = read.csv("./DeseqNormRNAwithMetadata.txt", sep="\t", row.names = 1, stringsAsFactors=FALSE)
rna_metadata_rows = 64
rna_df <- data.frame(lapply(rna_df, as.character), stringsAsFactors=FALSE, row.names = rownames(rna_df)) #This needs to be done for the transcript data, but causes problems with the pcl data.
rna_df <- data.frame(t(rna_df))
fiber_subset = "Mix"
rna_df <- rna_df[which(rna_df$fiber==fiber_subset),] #subsetting by fiber
rna_df <- data.frame(lapply(rna_df, as.factor), stringsAsFactors=FALSE, row.names = rownames(rna_df))
rna_df <- data.frame(t(rna_df))
rna_metadata = head(rna_df,rna_metadata_rows)
rna_df <- data.frame(t(rna_df))
for (j in colnames(rna_df)[35:rna_metadata_rows]) {
print(j)
df = c(NA,NA,NA,NA)
total_variance <- c()
library(lme4)
#iterate over the columns of the data that we're interested in using ncol(rna_df)
for (i in (rna_metadata_rows+1):ncol(rna_df)) {
#print(shapiro.test(as.numeric(rna_df[,i])))
#qqnorm(as.numeric(rna_df[,i])
to_bind <- tryCatch({
model <- glmer(as.numeric(as.character(rna_df[,i])) ~ 1 + (1|week) + (1|participant) + as.numeric(as.character(rna_df[[j]])), data=rna_df)
variance <- as.data.frame(VarCorr(model))
to_bind <- variance$vcov/sum(variance$vcov)*100
},
error = function(err){c(NA,NA,NA,NA)})
to_bind <- c(to_bind,colnames(rna_df[i]))
df <- rbind(df,to_bind)
total_variance <- c(total_variance, sum(variance$vcov))
}
#
write.table(df, file = paste("./RNA/WeekPart",j,fiber_subset,".txt",sep=""), sep="\t")
write.table(total_variance, file = paste("./RNA/totvarRNAAxWeekPart",j,".txt",sep=""), sep="\t")
#df <- read.table("/Users/SLancaster/Desktop/varianceAxHomaPartWeek.txt", row.names=NULL)
#df <- df[,-1] #Only to be used when reading a df from a table
#df <- as.matrix(df) #Only to be used when reading a df from a table
df <- na.omit(df)
rownames(df) <- df[,4]
df <- df[,-4]
class(df) <- "numeric"
if ( (nrow(df) == 0) | (ncol(df) <= 2) ) {
next
}
colnames(df) <- c("Participant", "Week", "Other")
df <- data.frame(df)
print(df[1:50,])
library(ggtern)
plot1 <- ggtern(data = df,aes(x = Week ,y = Participant, z = Other)) +
#geom_density_tern(aes(color=..level..), bins=4500) +
#geom_density_tern(aes(fill=..level.., alpha=abs(..level..)),bins=500, binwidth=100) +
#geom_point(size=0.5, alpha=0.5) +
stat_density_tern(geom="polygon", n=4000, bins=150, aes(fill=..level..)) +
scale_fill_gradient(low="yellow",high="red") +
scale_color_gradient(low="yellow",high="red") +
theme_bw() +
theme(legend.justification=c(0,1), legend.position=c(0,1), panel.background = element_rect(fill = "light gray", colour = "light gray")) +
theme_nogrid() +
guides(fill = guide_colorbar(order=1),
alpha= guide_legend(order=2),
color="none") +
labs( title= "RNA",
fill = "Value, V",alpha="|V - 0|")
ggsave(plot1, file=paste("./RNA/xWeekPart",j,fiber_subset,".pdf",sep=""))
}