Streamline your text evaluation process with Galtea's powerful annotation task creator.
Before starting, make sure you have Poetry installed. Poetry is a tool for dependency management and packaging in Python.
-
Clone the repository:
git clone https://github.com/langtech-bsc/galtea-sdk.git cd galtea-sdk
-
To install the project dependencies, run:
poetry install
-
To active the virtual environmennt created by Poetry run:
poetry shell
-
Set up your environment variables: Create a
.env
file in your project root directory with the following content:ARGILLA_API_URL=your_argilla_api_url ARGILLA_API_KEY=your_argilla_api_key
Replace
your_argilla_api_url
andyour_argilla_api_key
with your actual Argilla API URL and key.
Elevate your text evaluation process with Galtea's intuitive annotation task creator. Here's how to get started:
-
Prepare your dataset: Ensure you have a JSON dataset file (e.g.,
ab_testing_100_red_team.json
) in your project directory. Follow the specific json schema format for the dataset.Example:
[ { "id": "1", "prompt": "This is a prompt", "answer_a": "This is answer a", "answer_b": "This is answer b", "metadata": { "model_a": "model_a_value", "model_b": "model_b_value", "extra_metadata_field": "extra_metadata_field_value" } }, { "id": "2", "prompt": "This is another prompt", "answer_a": "This is answer a", "answer_b": "This is answer b", "metadata": { "model_a": "model_a_value", "model_b": "model_b_value", "extra_metadata_field": "extra_metadata_field_value" } }, { "id": "3", "prompt": "This is a third prompt", "answer_a": "This is answer a", "answer_b": "This is answer b", "metadata": { "model_a": "model_a_value", "model_b": "model_b_value", "extra_metadata_field": "extra_metadata_field_value" } } ]
-
Create your annotation task: In your
main.py
file, use the following code to create a simple ab testing annotation task:from dotenv import load_dotenv load_dotenv() import galtea def main(): with galtea.ArgillaAnnotationTask() as pipeline: pipeline.create_annotation_task( name="text-eval", template_type="ab_testing", dataset_path="./sample_data/dataset.json", min_submitted=1, guidelines="This is a test guidelines", users_path_file="./sample_data/users.json" ) # print(pipeline.get_progress()) if __name__ == "__main__": main()
-
Launch your annotation task: Run the script to create your task:
python main.py
This will generate a powerful "text-eval" annotation task using the AB testing template.
Customize the parameters to align with your specific evaluation needs, such as adjusting the name
, dataset_path
, template_type
, min_submitted
and guidelines
.
With Galtea, you're now ready to supercharge your text evaluation process and gain valuable insights from your data!