-
Notifications
You must be signed in to change notification settings - Fork 166
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2 from kylejusticemagnuson/add-indicators
Add new Indicators
- Loading branch information
Showing
13 changed files
with
858 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
import numpy as np | ||
from pyti.function_helper import fill_for_noncomputable_vals | ||
from pyti.relative_strength_index import relative_strength_index | ||
|
||
|
||
def stochrsi(data, period): | ||
""" | ||
StochRSI. | ||
Formula: | ||
SRSI = ((RSIt - RSI LOW) / (RSI HIGH - LOW RSI)) * 100 | ||
""" | ||
rsi = relative_strength_index(data, period)[period:] | ||
stochrsi = map(lambda idx: 100 * ((rsi[idx] - np.min(rsi[idx+1-period:idx+1])) / (np.max(rsi[idx+1-period:idx+1]) - np.min(rsi[idx+1-period:idx+1]))), range(period-1, len(rsi))) | ||
stochrsi = fill_for_noncomputable_vals(data, stochrsi) | ||
return stochrsi |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
import numpy as np | ||
from pyti import catch_errors | ||
from pyti.function_helper import fill_for_noncomputable_vals | ||
from pyti.true_range import true_range | ||
|
||
|
||
def buying_pressure(close_data, low_data): | ||
""" | ||
Buying Pressure. | ||
Formula: | ||
BP = current close - min() | ||
""" | ||
catch_errors.check_for_input_len_diff(close_data, low_data) | ||
bp = map( | ||
lambda idx: | ||
close_data[idx] - np.min([low_data[idx], close_data[idx-1]]), | ||
range(1, len(close_data)) | ||
) | ||
bp = fill_for_noncomputable_vals(close_data, bp) | ||
return bp | ||
|
||
|
||
def avg_helper(close_data, low_data, period): | ||
catch_errors.check_for_input_len_diff(close_data, low_data) | ||
catch_errors.check_for_period_error(close_data, period) | ||
bp = buying_pressure(close_data, low_data) | ||
tr = true_range(close_data, period) | ||
avg = map( | ||
lambda idx: | ||
sum(bp[idx+1-period:idx+1]) / sum(tr[idx+1-period:idx+1]), | ||
range(period-1, len(close_data)) | ||
) | ||
avg = fill_for_noncomputable_vals(close_data, avg) | ||
return avg | ||
|
||
|
||
def average_7(close_data, low_data, period=7): | ||
""" | ||
Average7. | ||
Formula: | ||
AVG7 = SUM(BP) / SUM(TR) for 7 days | ||
""" | ||
return avg_helper(close_data, low_data, period) | ||
|
||
|
||
def average_14(close_data, low_data, period=14): | ||
""" | ||
Averag14. | ||
Formula: | ||
AVG14 = SUM(BP) / SUM(TR) for 14 days | ||
""" | ||
return avg_helper(close_data, low_data, period) | ||
|
||
|
||
def average_28(close_data, low_data, period=28): | ||
""" | ||
average_28. | ||
Formula: | ||
AVG14 = SUM(BP) / SUM(TR) for 28 days | ||
""" | ||
return avg_helper(close_data, low_data, period) | ||
|
||
|
||
def ultimate_oscillator(close_data, low_data): | ||
""" | ||
Ultimate Oscillator. | ||
Formula: | ||
UO = 100 * ((4 * AVG7) + (2 * AVG14) + AVG28) / (4 + 2 + 1) | ||
""" | ||
a7 = 4 * average_7(close_data, low_data) | ||
a14 = 2 * average_14(close_data, low_data) | ||
a28 = average_28(close_data, low_data) | ||
uo = 100 * ((a7 + a14 + a28) / 7) | ||
return uo |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
import numpy as np | ||
from pyti import catch_errors | ||
from pyti.function_helper import fill_for_noncomputable_vals | ||
|
||
|
||
def volume_adjusted_moving_average(close_data, volume, period): | ||
""" | ||
Volume Adjusted Moving Average. | ||
Formula: | ||
VAMA = SUM(CLOSE * VolumeRatio) / period | ||
""" | ||
catch_errors.check_for_input_len_diff(close_data, volume) | ||
catch_errors.check_for_period_error(close_data, period) | ||
|
||
avg_vol = np.mean(volume) | ||
vol_incr = avg_vol * 0.67 | ||
vol_ratio = map(lambda val: val / vol_incr, volume) | ||
close_vol = np.array(close_data) * vol_ratio | ||
vama = map( | ||
lambda idx: | ||
sum(close_vol[idx+1-period:idx+1]) / period, | ||
range(period-1, len(close_data)) | ||
) | ||
vama = fill_for_noncomputable_vals(close_data, vama) | ||
return vama |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
from pyti import catch_errors | ||
from pyti.simple_moving_average import simple_moving_average as sma | ||
|
||
|
||
def volume_oscillator(volume, short_period, long_period): | ||
""" | ||
Volume Oscillator. | ||
Formula: | ||
vo = 100 * (SMA(vol, short) - SMA(vol, long) / SMA(vol, long)) | ||
""" | ||
catch_errors.check_for_period_error(volume, short_period) | ||
catch_errors.check_for_period_error(volume, long_period) | ||
|
||
vo = (100 * ((sma(volume, short_period) - sma(volume, long_period)) / | ||
sma(volume, long_period))) | ||
return vo |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
import numpy as np | ||
|
||
|
||
def williams_percent_r(close_data): | ||
""" | ||
Williams %R. | ||
Formula: | ||
wr = (HighestHigh - close / HighestHigh - LowestLow) * -100 | ||
""" | ||
highest_high = np.max(close_data) | ||
lowest_low = np.min(close_data) | ||
wr = map( | ||
lambda close: | ||
((highest_high - close) / (highest_high - lowest_low)) * -100, | ||
close_data | ||
) | ||
return wr |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
import unittest | ||
import numpy as np | ||
|
||
from tests.sample_data import SampleData | ||
from pyti import stochrsi | ||
|
||
|
||
class TestStochRSI(unittest.TestCase): | ||
def setUp(self): | ||
"""Create data to use for testing.""" | ||
self.data = SampleData().get_sample_close_data() | ||
|
||
self.stochrsi_period_6_expected = [np.nan, np.nan, np.nan, np.nan, | ||
np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, | ||
44.471222157460431, 0.0, 0.0, 11.492848409063964, 0.0, 0.0, 0.0, | ||
12.996028967803408, 0.0, 0.0, 100.0, 100.0, 88.834308685247748, | ||
72.485626510038344, 68.948591144212699, 81.54139590783565, | ||
72.069361538856384, 0.0, 100.0, 45.968610199984546, 9.057017058300568, | ||
0.0, 72.780883175761147, 97.098272486847122, 100.0, 100.0, | ||
78.357655504172754, 0.0, 3.3759971697837599, 23.819966852076472, | ||
68.973352093845421, 100.0, 100.0, 88.361969800298795, 100.0, 100.0, | ||
100.0, 0.0, 0.0, 25.101888829188145, 0.0, 0.0, 0.0, 0.0, | ||
47.597870253604583, 52.570804308995712, 100.0, 0.14199939183552529, | ||
24.059960445031265, 10.896141995479166, 30.513406175435293, | ||
8.9065608580022868, 100.0, 68.068787936734168, 100.0, 100.0, | ||
22.231267706492098, 100.0, 100.0, 10.017481472275215, 0.0, 0.0, | ||
18.16126672568527, 40.521482277525919, 0.0, 0.0, 100.0, | ||
35.793893628113686, 100.0, 100.0, 100.0, 33.57757547925862, | ||
8.6247722964853466, 0.0, 17.302011810094726, 49.159702249924187, | ||
60.932783640150376, 31.942145934203868, 82.095023751511064, 100.0, | ||
100.0, 100.0, 100.0, 100.0, 15.042425515475383, 66.462588569115553, | ||
74.790326011378099, 88.557628253482306, 92.354570404206441, | ||
61.458440388782407, 0.0, 36.577660953654245, 0.0, 15.598256159532903, | ||
31.358012359220449, 48.116305853565294, 0.0, 0.0, 0.0, 0.0, 0.0, | ||
33.85258109852839, 57.650642272894835, 100.0, 75.843338626788722, | ||
74.436615187163184, 0.0, 4.4097493664417158, 0.0, 94.669594611808265, | ||
65.534738257501118, 27.780745298221497, 0.0, 47.709624772979161, | ||
32.163553172474437, 100.0] | ||
|
||
self.stochrsi_period_8_expected = [np.nan, np.nan, np.nan, np.nan, | ||
np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, | ||
np.nan, np.nan, 0.0, 0.0, 0.0, 5.9170858267051587, 0.0, 0.0, | ||
44.731067481598593, 100.0, 89.261888846566762, 73.506626263784852, | ||
70.124518845179722, 92.473144438199071, 91.742030577620142, | ||
15.037735074756913, 100.0, 47.306749309021193, 10.140545886437421, 0.0, | ||
72.278552326472152, 97.679213884699251, 100.0, 100.0, | ||
80.347390204472063, 47.828534810102333, 49.538188855519977, | ||
27.611275977441203, 67.963793266686267, 78.134869525725151, | ||
99.252804098374185, 90.150479498192112, 100.0, 100.0, 100.0, | ||
4.9013099702443785, 0.0, 24.68617122074053, 0.0, 0.0, 0.0, 0.0, | ||
39.802519009096748, 29.010598833949796, 53.053222984371452, 0.0, | ||
21.631906841014569, 8.3458733315535447, 25.22414006544841, | ||
4.5780668059713552, 49.007350471187422, 34.273386605258764, 100.0, | ||
100.0, 22.403954556738867, 100.0, 100.0, 12.105988070501787, 0.0, 0.0, | ||
16.657204131414304, 37.35692115954221, 0.0, 0.0, 100.0, | ||
32.997720377696496, 100.0, 100.0, 100.0, 51.334083599997683, | ||
31.853266142141972, 8.1527836280558503, 22.745953245334995, | ||
45.508879820782681, 27.946619216922286, 14.815380622177496, | ||
80.088315251347964, 100.0, 100.0, 100.0, 100.0, 100.0, | ||
56.481950024728867, 86.652579488979171, 93.049895919142116, 100.0, | ||
100.0, 69.687224483627773, 4.7487429986927374, 40.824255220794718, 0.0, | ||
14.82258516102512, 25.574101538565898, 33.214453816875086, 0.0, 0.0, | ||
0.0, 0.0, 0.0, 12.028791696947424, 5.742958082055595, | ||
46.151131514517758, 73.698400050314845, 72.171996877638023, 0.0, | ||
3.9883199142603543, 0.0, 63.887076434178304, 43.192059380396671, | ||
18.535460030504883, 0.0, 44.316525695640522, 29.344038948303997, 100.0] | ||
|
||
self.stochrsi_period_10_expected = [np.nan, np.nan, np.nan, np.nan, | ||
np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, | ||
np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 0.0, 0.0, | ||
27.66288026615667, 68.42179408282631, 60.95511012399831, | ||
73.056366879654533, 69.632283416324114, 91.673870575592005, | ||
90.973445004595106, 62.013426837224038, 99.412333298280316, | ||
56.029604272708319, 9.5954111342724602, 0.0, 71.203658595987136, | ||
97.102435963871216, 100.0, 100.0, 81.393245300884587, | ||
49.654269940792076, 51.293355239394344, 60.927269295952172, | ||
83.862439770570063, 81.039109157752904, 100.0, 90.97577696869304, 100.0, | ||
100.0, 100.0, 58.073925890407921, 41.358292066458077, | ||
25.654266421595828, 0.0, 0.0, 0.0, 0.0, 23.713848713037535, | ||
16.806950663591991, 47.466120473538204, 0.0, 10.796474428727892, | ||
4.690894374748388, 21.71719912790817, 1.5761771583204254, | ||
41.050006983973205, 27.2736467372333, 100.0, 100.0, 21.771640646517728, | ||
100.0, 100.0, 26.039977920480617, 0.0, 0.0, 15.737216917199534, | ||
35.412360099771497, 0.0, 0.0, 50.704904555903788, 14.994477423420522, | ||
100.0, 100.0, 100.0, 51.87903440907273, 31.867669596262672, | ||
26.242262653493135, 37.395093360643585, 49.651518706252737, | ||
34.777475814569073, 14.222945117349619, 34.122394180512103, | ||
59.589894426757162, 100.0, 100.0, 100.0, 100.0, 60.387458746010005, | ||
93.702909932596725, 100.0, 100.0, 100.0, 81.695205658391245, | ||
18.390800382020387, 51.052985817884824, 0.0, 14.606027212675402, | ||
25.21593064024956, 32.720972201555149, 0.0, 0.0, 0.0, 0.0, 0.0, | ||
10.169626915478698, 3.627127999972207, 19.385791765467346, | ||
13.371820642369503, 22.43112726583951, 0.0, 3.4785405767313109, 0.0, | ||
54.371077241311575, 35.289162480238765, 7.8549519711197089, 0.0, | ||
28.494276007229587, 18.19959392470588, 100.0] | ||
|
||
def test_stochrsi_period_6(self): | ||
period = 6 | ||
sr = stochrsi.stochrsi(self.data, period) | ||
np.testing.assert_array_equal(sr, self.stochrsi_period_6_expected) | ||
|
||
def test_stochrsi_period_8(self): | ||
period = 8 | ||
sr = stochrsi.stochrsi(self.data, period) | ||
np.testing.assert_array_equal(sr, self.stochrsi_period_8_expected) | ||
|
||
def test_stochrsi_period_10(self): | ||
period = 10 | ||
sr = stochrsi.stochrsi(self.data, period) | ||
np.testing.assert_array_equal(sr, self.stochrsi_period_10_expected) | ||
|
||
def test_stochrsi_invalid_period(self): | ||
period = 128 | ||
with self.assertRaises(Exception) as cm: | ||
stochrsi.stochrsi(self.data, period) | ||
expected = "Error: data_len < period" | ||
self.assertEqual(str(cm.exception), expected) |
Oops, something went wrong.