Skip to content

kul-optec/panoc-gauss-newton-ifac-experiments

Repository files navigation

Gauss–Newton meets PANOC: A fast and globally convergent algorithm for nonlinear optimal control

To reproduce (Linux, requires Python 3, CMake, Ninja, a modern C/C++ toolchain):

# Create a Python virtual environment
python3 -m venv py-venv
. py-venv/bin/activate
# Set compiler flags for optimal performance
export CFLAGS=-march=native
export CXXFLAGS=-march=native
# Install alpaqa dependencies into virtual environment
wget https://raw.githubusercontent.com/kul-optec/alpaqa/50ea3edaa6f3c79cb10f3f7816ef475606cd11c8/scripts/install-casadi-static.sh -O- | bash
wget https://raw.githubusercontent.com/kul-optec/alpaqa/50ea3edaa6f3c79cb10f3f7816ef475606cd11c8/scripts/install-eigen.sh -O- | bash
# Install Python dependencies, build alpaqa from source
pip install -r requirements.txt # takes a couple of minutes
# Run the experiments and generate the figures
make # takes some more minutes, close the figures to start next experiment

If you wish to use a pre-built version of alpaqa rather than building from source, Wheel packages are available in the dist folder.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published