Flexible Weight Tuning and Weight Fusion Strategies for Continual Named Entity Recognition (Findings of ACL 2024)
This repository contains all of our WT&WF code for ExtendNER and CFNER baselines. We sincerely thank the help of Zheng et al.'s repository.
- bert-base-cased/: the directory of configurations and PyTorch pretrained model for bert-base-cased
- config/ : the directory of configurations for our method
- datasets/ : the directory of datasets
- experiments/ : the directory of training logs from different runs
- src/ : the directory of the source code
- main_CL.py : the python file to be executed
.
├── bert-base-cased
├── config
│ ├── conll2003
│ ├── ontonotes5
│ ├── i2b2
├── datasets
│ └── NER_data
│ ├── conll2003
│ ├── i2b2
│ └── ontonotes5
├── experiments
| └── xxx.pth
├── main_CL.py
└── src
├── config.py
├── dataloader.py
├── model.py
├── trainer.py
├── utils_plot.py
└── utils.py
Reference environment settings:
python 3.7.13
torch 1.12.1+cu116
transformers 4.14.1
Download bert-base-cased to the directory of bert-base-cased/
Download base models to the directory of experiments/
Specify your configurations (e.g., ./config/i2b2/fg_1_pg_1/i2b2_distill_WF_WT.yaml (ExtendNER+WT&WF)) and run the following command
CUDA_VISIBLE_DEVICES=0 nohup python3 -u main_CL.py --exp_name i2b2_1-1_distill_WT_WF --exp_id 1 --cfg config/i2b2/fg_1_pg_1/i2b2_distill_WF_WT.yaml 2>&1 &
Then, the results as well as the model checkpoint will be saved automatically in the directory ./experiments/i2b2_1-1_distill_WT_WF/1/