Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
krishnaik06 authored May 20, 2024
1 parent abc2a60 commit 08f0627
Show file tree
Hide file tree
Showing 6 changed files with 92 additions and 0 deletions.
81 changes: 81 additions & 0 deletions End To End Document Q&A With Google Gemma/app.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
import streamlit as st
import os
from langchain_groq import ChatGroq
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFDirectoryLoader
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from dotenv import load_dotenv
import os
load_dotenv()

## load the GROQ And OpenAI API KEY
groq_api_key=os.getenv('GROQ_API_KEY')
os.environ["GOOGLE_API_KEY"]=os.getenv("GOOGLE_API_KEY")

st.title("Gemma Model Document Q&A")

llm=ChatGroq(groq_api_key=groq_api_key,
model_name="Llama3-8b-8192")

prompt=ChatPromptTemplate.from_template(
"""
Answer the questions based on the provided context only.
Please provide the most accurate response based on the question
<context>
{context}
<context>
Questions:{input}
"""
)

def vector_embedding():

if "vectors" not in st.session_state:

st.session_state.embeddings=GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
st.session_state.loader=PyPDFDirectoryLoader("./us_census") ## Data Ingestion
st.session_state.docs=st.session_state.loader.load() ## Document Loading
st.session_state.text_splitter=RecursiveCharacterTextSplitter(chunk_size=1000,chunk_overlap=200) ## Chunk Creation
st.session_state.final_documents=st.session_state.text_splitter.split_documents(st.session_state.docs[:20]) #splitting
st.session_state.vectors=FAISS.from_documents(st.session_state.final_documents,st.session_state.embeddings) #vector OpenAI embeddings





prompt1=st.text_input("Enter Your Question From Doduments")


if st.button("Documents Embedding"):
vector_embedding()
st.write("Vector Store DB Is Ready")

import time



if prompt1:
document_chain=create_stuff_documents_chain(llm,prompt)
retriever=st.session_state.vectors.as_retriever()
retrieval_chain=create_retrieval_chain(retriever,document_chain)
start=time.process_time()
response=retrieval_chain.invoke({'input':prompt1})
print("Response time :",time.process_time()-start)
st.write(response['answer'])

# With a streamlit expander
with st.expander("Document Similarity Search"):
# Find the relevant chunks
for i, doc in enumerate(response["context"]):
st.write(doc.page_content)
st.write("--------------------------------")





11 changes: 11 additions & 0 deletions End To End Document Q&A With Google Gemma/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
faiss-cpu
groq
langchain-groq
PyPDF2
langchain_google_genai
langchain
streamlit
langchain_community
python-dotenv
pypdf
google-cloud-aiplatform>=1.38
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.

0 comments on commit 08f0627

Please sign in to comment.