-
Notifications
You must be signed in to change notification settings - Fork 37
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add manual page for nevaluate and update front web page.
- Loading branch information
Kasper Peeters
committed
Nov 27, 2023
1 parent
ecdbaa4
commit c82b8e6
Showing
4 changed files
with
138 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
{ | ||
"cell_id": 7056241270934378170, | ||
"cells": [ | ||
{ | ||
"cell_id": 6442002833303548429, | ||
"cell_origin": "client", | ||
"cell_type": "latex", | ||
"cells": [ | ||
{ | ||
"cell_id": 14156260080777624593, | ||
"cell_origin": "client", | ||
"cell_type": "latex_view", | ||
"source": "\\algorithm{nevaluate}{Numerically evaluate an expression.}\n\nGiven a scalar expression of one or more variables, evaluate it for a range of values \nof those variables. This algorithm accepts a Cadabra expression and one or more numpy arrays\ncontaining the values of the variables, in the form of a dictionary. A simple example with \nan expression of one variable:" | ||
} | ||
], | ||
"hidden": true, | ||
"source": "\\algorithm{nevaluate}{Numerically evaluate an expression.}\n\nGiven a scalar expression of one or more variables, evaluate it for a range of values \nof those variables. This algorithm accepts a Cadabra expression and one or more numpy arrays\ncontaining the values of the variables, in the form of a dictionary. A simple example with \nan expression of one variable:" | ||
}, | ||
{ | ||
"cell_id": 7717361411841115229, | ||
"cell_origin": "client", | ||
"cell_type": "input", | ||
"cells": [ | ||
{ | ||
"cell_id": 16317621934812508465, | ||
"cell_origin": "server", | ||
"cell_type": "latex_view", | ||
"cells": [ | ||
{ | ||
"cell_id": 3643042606220920068, | ||
"cell_origin": "server", | ||
"cell_type": "input_form", | ||
"source": "\\cos(x) \\exp( - 1/4 (x)**2)" | ||
} | ||
], | ||
"source": "\\begin{dmath*}{}\\cos{x} \\exp\\left( - \\frac{1}{4}{x}^{2}\\right)\\end{dmath*}" | ||
} | ||
], | ||
"source": "ex:= \\cos(x) \\exp(-x**2/4);\n\nimport numpy as np\n\nxv = np.linspace(0, 3, 100)\nz = np.array( nevaluate(ex, {$x$: xv} ) )" | ||
}, | ||
{ | ||
"cell_id": 9285492536561123852, | ||
"cell_origin": "client", | ||
"cell_type": "input", | ||
"cells": [ | ||
{ | ||
"cell_id": 9668872934801381964, | ||
"cell_origin": "server", | ||
"cell_type": "verbatim", | ||
"source": "\\begin{verbatim}[1. 0.99931146 0.99724785 0.99381515 0.98902334 0.98288631\n 0.97542182 0.96665142 0.95660038 0.94529757]\\end{verbatim}" | ||
} | ||
], | ||
"source": "z[0:10];" | ||
}, | ||
{ | ||
"cell_id": 5511376990109163867, | ||
"cell_origin": "client", | ||
"cell_type": "latex", | ||
"cells": [ | ||
{ | ||
"cell_id": 3830134294778153283, | ||
"cell_origin": "client", | ||
"cell_type": "latex_view", | ||
"source": "The \\algo{nevaluate} function thus takes as its second argument a Python\ndictionary which maps each variable in the expression to a list of values.\n\nFor expressions of multiple variables, the logic is the same: just list all \nthe variables in the dictionary, as in the example below." | ||
} | ||
], | ||
"hidden": true, | ||
"source": "The \\algo{nevaluate} function thus takes as its second argument a Python\ndictionary which maps each variable in the expression to a list of values.\n\nFor expressions of multiple variables, the logic is the same: just list all \nthe variables in the dictionary, as in the example below." | ||
}, | ||
{ | ||
"cell_id": 2992782121045095320, | ||
"cell_origin": "client", | ||
"cell_type": "input", | ||
"cells": [ | ||
{ | ||
"cell_id": 3251060037967502714, | ||
"cell_origin": "server", | ||
"cell_type": "latex_view", | ||
"cells": [ | ||
{ | ||
"cell_id": 6149534026651365282, | ||
"cell_origin": "server", | ||
"cell_type": "input_form", | ||
"source": "\\cos(x) \\sin(y)" | ||
} | ||
], | ||
"source": "\\begin{dmath*}{}\\cos{x} \\sin{y}\\end{dmath*}" | ||
} | ||
], | ||
"source": "ex:= \\cos(x) \\sin(y);" | ||
}, | ||
{ | ||
"cell_id": 13003303353493457346, | ||
"cell_origin": "client", | ||
"cell_type": "input", | ||
"source": "xv = np.linspace(0, np.pi, 100)\nyv = np.linspace(0, np.pi, 100)" | ||
}, | ||
{ | ||
"cell_id": 14177849469379369091, | ||
"cell_origin": "client", | ||
"cell_type": "input", | ||
"source": "z = np.array( nevaluate(ex, {$x$: xv, $y$: yv}) )" | ||
}, | ||
{ | ||
"cell_id": 10078872525967387623, | ||
"cell_origin": "client", | ||
"cell_type": "input", | ||
"cells": [ | ||
{ | ||
"cell_id": 26823108033460839, | ||
"cell_origin": "server", | ||
"cell_type": "verbatim", | ||
"source": "\\begin{verbatim}0.3106205340965772\\end{verbatim}" | ||
} | ||
], | ||
"source": "z[3,10];" | ||
}, | ||
{ | ||
"cell_id": 10368637782920619472, | ||
"cell_origin": "client", | ||
"cell_type": "input", | ||
"source": "" | ||
} | ||
], | ||
"description": "Cadabra JSON notebook format", | ||
"version": 1.0 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -107,6 +107,7 @@ set(ALGOS | |
lr_tensor | ||
map_sympy | ||
meld | ||
nevaluate | ||
product_rule | ||
raise_free_indices | ||
reduce_delta | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters