Skip to content

Commit

Permalink
doc updates for release
Browse files Browse the repository at this point in the history
  • Loading branch information
kishwarshafin committed Nov 2, 2021
1 parent 5e705da commit da61114
Show file tree
Hide file tree
Showing 7 changed files with 70 additions and 152 deletions.
26 changes: 17 additions & 9 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,13 +8,12 @@
</p>

---
### Version 0.5 update
### Version 0.6 update

We have updated PEPPER to support `Guppy v5.0.7`. The current v0.5 only supports ONT variant calling.

**NOTE: The models of v0.5 are trained with Guppy v5.0.7 "sup" mode. If you use have Guppy v4.X data, [please use PEPPER v0.4](https://github.com/kishwarshafin/pepper/tree/r0.4)**

**If you want to use PEPPER-Margin-DeepVariant for assembly polishing or PacBio HiFi variant calling, [please use PEPPER v0.4](https://github.com/kishwarshafin/pepper/tree/r0.4)**
PEPPER-Margin-deepvariant v0.6 supports:
* Oxford Nanopore Variant calling for Guppy 5.0.7 "Sup" basecaller
* Oxford Nanopore Variant calling for R10.4 Q20
* PacBio-HiFi data

---

Expand All @@ -23,24 +22,33 @@ Please cite the following manuscript if you are using `PEPPER-Margin-DeepVariant


<details>
<summary><a href="https://www.biorxiv.org/content/10.1101/2021.03.04.433952v1"><b>bioRxiv:</b> Haplotype-aware variant calling enables high accuracy in nanopore long-reads using deep neural networks.</a></summary>
<summary><a href="https://www.nature.com/articles/s41592-021-01299-w"><b>Nature Methods:</b> Haplotype-aware variant calling enables high accuracy in nanopore long-reads using deep neural networks.</a></summary>
Authors: Kishwar Shafin, Trevor Pesout, Pi-Chuan Chang, Maria Nattestad, Alexey Kolesnikov, Sidharth Goel, <br/> Gunjan Baid, Jordan M Eizenga, Karen H Miga, Paolo Carnevali, Miten Jain, Andrew Carroll, Benedict Paten.
</details>

---
### Quickstart
Please follow the quickstart guides to assess your setup. Please follow case-study documentations for detailed instructions.
#### Oxford Nanopore
* **Docker**: [Oxford Nanopore variant calling quick start](./docs/quickstart/variant_calling_docker_quickstart.md).
* **Singularity**: [Oxford Nanopore variant calling quick start](./docs/quickstart/variant_calling_singularity_quickstart.md).

#### PacBio-HiFi
* **Docker**: [Oxford Nanopore variant calling quick start](./docs/quickstart/variant_calling_docker_quickstart.md).
* **Singularity**: [Oxford Nanopore variant calling quick start](./docs/quickstart/variant_calling_singularity_quickstart.md).

### Case studies

The variant calling pipeline can be run on [Docker](https://docs.docker.com/install/linux/docker-ce/ubuntu/) or [Singularity](https://sylabs.io/guides/3.7/user-guide/quick_start.html#quick-installation-steps). The case studies are designed on `chr20` of `HG002` sample.

#### Oxford Nanopore Variant calling
The case-studies include input data and benchmarking of the run:
* Nanopore variant calling using **Docker**: [Link](./docs/pipeline_docker/ONT_variant_calling.md)
* Nanopore variant calling using **Singularity**: [Link](./docs/pipeline_singularity/ONT_variant_calling_singularity.md)
* Nanopore variant calling using **NVIDIA-docker**: [Link](./docs/pipeline_docker_gpu/ONT_variant_calling_gpu.md)

#### PacBio-HiFi variant calling
* Nanopore variant calling using **Docker**: [Link](./docs/pipeline_docker/ONT_variant_calling.md)
* Nanopore variant calling using **Singularity**: [Link](./docs/pipeline_singularity/ONT_variant_calling_singularity.md)

### License
[PEPPER license](./LICENSE), [Margin License](https://github.com/UCSC-nanopore-cgl/margin/blob/master/LICENSE.txt) and [DeepVariant License](https://github.com/google/deepvariant/blob/r1.1/LICENSE) extend to the trained models (PEPPER, Margin and DeepVariant) and container environment (Docker and Singularity).
Expand All @@ -57,7 +65,7 @@ We are thankful to the developers of these packages:


### Fun Fact
<img src="https://vignette.wikia.nocookie.net/marveldatabase/images/7/72/Anthony_Stark_%28Earth-616%29_from_Iron_Man_Vol_5_2_002.jpg/revision/latest?cb=20130407031815" alt="guppy235" width="240p"> <br/>
<img src="https://vignette.wikia.nocookie.net/marveldatabase/images/7/72/Anthony_Stark_%28Earth-616%29_from_Iron_Man_Vol_5_2_002.jpg/revision/latest?cb=20130407031815" alt="Iron-Man" width="240p"> <br/>

The name "P.E.P.P.E.R." is inspired from an A.I. created by Tony Stark in the Marvel Comics (Earth-616).

Expand Down
75 changes: 19 additions & 56 deletions docs/pipeline_docker/HiFi_variant_calling.md
Original file line number Diff line number Diff line change
@@ -1,13 +1,13 @@
## PacBio HiFi variant calling workflow
PEPPER-Margin-DeepVariant is a haplotype-aware variant calling pipeline for long reads.

<img src="../../img/PMDV_variant_calling_HiFi.png" alt="PEPPER-Margin-DeepVariant Variant Calling Workflow">
<img src="../../img/PMDV_variant_calling_HiFi_v6.png" alt="PEPPER-Margin-DeepVariant Variant Calling Workflow">

----
### PacBio HiFi HG002 chr20 case-study
### PacBio HiFi HG003 chr20 case-study
We evaluated this pipeline on `~35x` HG002 data. The data is publicly available, please feel free to download, run and evaluate the pipeline.
```bash
Sample: HG002
Sample: HG003
Coverage: ~35x
Region: chr20
Reference: GRCh38_no_alt
Expand Down Expand Up @@ -62,7 +62,8 @@ BASE="${HOME}/hifi-case-study"
# Set up input data
INPUT_DIR="${BASE}/input/data"
REF="GRCh38_no_alt.chr20.fa"
BAM="HG002_PacBio_HiFi_35x_2_GRCh38_no_alt.chr20.bam"
BAM="HG003.GRCh38.chr20.pFDA_truthv2.bam"
OUTPUT_VCF="PEPPER_MARGIN_DEEPVARIANT_OUTPUT.vcf.gz"

# Set the number of CPUs to use
THREADS="64"
Expand All @@ -73,83 +74,45 @@ OUTPUT_DIR="${BASE}/output"
## Create local directory structure
mkdir -p "${OUTPUT_DIR}"
mkdir -p "${INPUT_DIR}"
mkdir -p input

# Download the data to input directory
wget -P ${INPUT_DIR} https://storage.googleapis.com/pepper-deepvariant-public/usecase_data/HG002_PacBio_HiFi_35x_2_GRCh38_no_alt.chr20.bam
wget -P ${INPUT_DIR} https://storage.googleapis.com/pepper-deepvariant-public/usecase_data/HG002_PacBio_HiFi_35x_2_GRCh38_no_alt.chr20.bam.bai
wget -P ${INPUT_DIR} https://downloads.pacbcloud.com/public/dataset/HG003/deepvariant-case-study/HG003.GRCh38.chr20.pFDA_truthv2.bam
wget -P ${INPUT_DIR} https://downloads.pacbcloud.com/public/dataset/HG003/deepvariant-case-study/HG003.GRCh38.chr20.pFDA_truthv2.bam.bai
wget -P ${INPUT_DIR} https://storage.googleapis.com/pepper-deepvariant-public/usecase_data/GRCh38_no_alt.chr20.fa
wget -P ${INPUT_DIR} https://storage.googleapis.com/pepper-deepvariant-public/usecase_data/GRCh38_no_alt.chr20.fa.fai
```

##### Step 3: Run PEPPER-Margin to generate a phased bam
```bash
## Pull the docker image.
sudo docker pull kishwars/pepper_deepvariant:r0.4
sudo docker pull kishwars/pepper_deepvariant:r0.6

# Run PEPPER-Margin-DeepVariant
sudo docker run --ipc=host \
-v "${INPUT_DIR}":"${INPUT_DIR}" \
-v "${OUTPUT_DIR}":"${OUTPUT_DIR}" \
kishwars/pepper_deepvariant:r0.4 \
kishwars/pepper_deepvariant:r0.6 \
run_pepper_margin_deepvariant call_variant \
-b "${INPUT_DIR}/${BAM}" \
-f "${INPUT_DIR}/${REF}" \
-o "${OUTPUT_DIR}" \
-t ${THREADS} \
--ccs

# This generates a Phased bam in the output directory: MARGIN_PHASED.PEPPER_SNP_MARGIN.haplotagged.bam
```
##### Step 4: Run DeepVariant
```bash
PHASED_BAM=MARGIN_PHASED.PEPPER_SNP_MARGIN.haplotagged.bam
OUTPUT_PREFIX="HG002_HiFi_35x_2_GRCh38_PEPPER_Margin_DeepVariant.chr20"
OUTPUT_VCF="HG002_HiFi_35x_2_GRCh38_PEPPER_Margin_DeepVariant.chr20.vcf.gz"

sudo docker pull google/deepvariant:1.1.0

sudo docker run \
-v "${INPUT_DIR}":"${INPUT_DIR}" \
-v "${OUTPUT_DIR}":"${OUTPUT_DIR}" \
google/deepvariant:1.1.0 \
/opt/deepvariant/bin/run_deepvariant \
--model_type=PACBIO \
--ref="${INPUT_DIR}/${REF}" \
--reads="${OUTPUT_DIR}/${PHASED_BAM}" \
--output_vcf="${OUTPUT_DIR}/${OUTPUT_VCF}" \
--num_shards=${THREADS} \
--use_hp_information
```

##### Step 5: Phase the output VCF with Margin (Optional)
```bash
sudo docker run --ipc=host \
-v "${INPUT_DIR}":"${INPUT_DIR}" \
-v "${OUTPUT_DIR}":"${OUTPUT_DIR}" \
kishwars/pepper_deepvariant:r0.4 \
margin phase \
"${INPUT_DIR}/${BAM}" \
"${INPUT_DIR}/${REF}" \
"${OUTPUT_DIR}/${OUTPUT_VCF}" \
/opt/margin_dir/params/misc/allParams.phase_vcf.json \
-t ${THREADS} \
-M \
-o "${OUTPUT_DIR}/${OUTPUT_PREFIX}"

OUTPUT_PHASED_VCF=${OUTPUT_PREFIX}.phased.vcf
-t "${THREADS}" \
--hifi
```

###### Evaluation using hap.py (Optional)
You can evaluate the variants using `hap.py`.
Download benchmarking data:
```bash
# Set up input data
TRUTH_VCF="HG002_GRCh38_1_22_v4.2.1_benchmark.vcf.gz"
TRUTH_BED="HG002_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed"
TRUTH_VCF="HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz"
TRUTH_BED="HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed"

# Download truth VCFs
wget -P ${INPUT_DIR} https://storage.googleapis.com/pepper-deepvariant-public/usecase_data/HG002_GRCh38_1_22_v4.2.1_benchmark.vcf.gz
wget -P ${INPUT_DIR} https://storage.googleapis.com/pepper-deepvariant-public/usecase_data/HG002_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed
wget -P ${INPUT_DIR} ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv4.2.1/GRCh38/HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed
wget -P ${INPUT_DIR} ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv4.2.1/GRCh38/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz
wget -P ${INPUT_DIR} ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv4.2.1/GRCh38/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi
```

Run hap.py:
Expand Down Expand Up @@ -177,8 +140,8 @@ ${OUTPUT_DIR}/${OUTPUT_VCF} \

| Type | Truth<br>total | True<br>positives | False<br>negatives | False<br>positives | Recall | Precision | F1-Score |
|:-----:|:--------------:|:-----------------:|:------------------:|:------------------:|:--------:|:---------:|:--------:|
| INDEL | 11256 | 11175 | 81 | 94 | 0.992804 | 0.991953 | 0.992378 |
| SNP | 71333 | 71277 | 56 | 8 | 0.999215 | 0.999888 | 0.999551 |
| INDEL | 10628 | 10562 | 66 | 60 | 0.993790 | 0.994577 | 0.994183 |
| SNP | 70166 | 70140 | 26 | 17 | 0.999629 | 0.999758 | 0.999694 |

### Authors:
This pipeline is developed in a collaboration between UCSC genomics institute and the genomics team at Google health.
24 changes: 9 additions & 15 deletions docs/pipeline_docker/ONT_variant_calling.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ We evaluated this pipeline on `~30x` HG002 data. The data is publicly available,
```bash
Sample: HG002
Coverage: ~25-90x
Basecaller: Guppy 5.0.7 or higher
Basecaller: Guppy 5.0.7 "SUP"
Region: chr20
Reference: GRCh38_no_alt
```
Expand Down Expand Up @@ -72,7 +72,7 @@ THREADS="64"
# Set up output directory
OUTPUT_DIR="${BASE}/output"
OUTPUT_PREFIX="HG002_ONT_30x_2_GRCh38_PEPPER_Margin_DeepVariant.chr20"
OUTPUT_VCF="HG002_ONT_30x_2_GRCh38_PEPPER_Margin_DeepVariant.chr20.vcf.gz"
OUTPUT_VCF="PEPPER_MARGIN_DEEPVARIANT_OUTPUT.vcf.gz"

## Create local directory structure
mkdir -p "${OUTPUT_DIR}"
Expand All @@ -88,25 +88,19 @@ wget -P ${INPUT_DIR} https://storage.googleapis.com/pepper-deepvariant-public/us
##### Step 3: Run PEPPER-Margin-DeepVariant
```bash
## Pull the docker image.
sudo docker pull kishwars/pepper_deepvariant:r0.5
sudo docker pull kishwars/pepper_deepvariant:r0.6

# Run PEPPER-Margin-DeepVariant
sudo docker run --ipc=host \
sudo docker run \
-v "${INPUT_DIR}":"${INPUT_DIR}" \
-v "${OUTPUT_DIR}":"${OUTPUT_DIR}" \
kishwars/pepper_deepvariant:r0.5 \
kishwars/pepper_deepvariant:r0.6 \
run_pepper_margin_deepvariant call_variant \
-b "${INPUT_DIR}/${BAM}" \
-f "${INPUT_DIR}/${REF}" \
-o "${OUTPUT_DIR}" \
-p "${OUTPUT_PREFIX}" \
-t ${THREADS} \
--ont

# Optional parameters:
# -s HG002 # optional: Sets Sample Name
# --gvcf # optional: Produces gVCF output
# --phased_output # optional: Produces phased output
-t "${THREADS}" \
--ont_r9_guppy5_sup # For R10.4 Q20 reads set: --ont_r10_q20
```

###### Evaluation using hap.py (Optional)
Expand Down Expand Up @@ -148,8 +142,8 @@ ${OUTPUT_DIR}/${OUTPUT_VCF} \

| Type | Truth<br>total | True<br>positives | False<br>negatives | False<br>positives | Recall | Precision | F1-Score |
|:-----:|:--------------:|:-----------------:|:------------------:|:------------------:|:--------:|:---------:|:--------:|
| INDEL | 11256 | 7136 | 4120 | 2137 | 0.633973 | 0.771688 | 0.696084 |
| SNP | 71333 | 71004 | 329 | 322 | 0.995388 | 0.995487 | 0.995437 |
| INDEL | 11256 | 6897 | 4359 | 1211 | 0.61274 | 0.853443 | 0.713333 |
| SNP | 71333 | 71012 | 321 | 256 | 0.99550 | 0.996409 | 0.995954 |

### Authors:
This pipeline is developed in a collaboration between UCSC genomics institute and the genomics team at Google health.
71 changes: 17 additions & 54 deletions docs/pipeline_singularity/HiFi_variant_calling_singularity.md
Original file line number Diff line number Diff line change
@@ -1,13 +1,13 @@
## PacBio HiFi variant calling workflow [Using singularity]
PEPPER-Margin-DeepVariant is a haplotype-aware variant calling pipeline for long reads.

<img src="../../img/PMDV_variant_calling_HiFi.png" alt="PEPPER-Margin-DeepVariant Variant Calling Workflow">
<img src="../../img/PMDV_variant_calling_HiFi_v6.png" alt="PEPPER-Margin-DeepVariant Variant Calling Workflow">

----
### PacBio HiFi HG002 chr20 case-study
We evaluated this pipeline on `~35x` HG002 data.
```bash
Sample: HG002
Sample: HG003
Coverage: ~35x
Region: chr20
Reference: GRCh38_no_alt
Expand Down Expand Up @@ -64,7 +64,8 @@ BASE="${HOME}/hifi-case-study"
# Set up input data
INPUT_DIR="${BASE}/input/data"
REF="GRCh38_no_alt.chr20.fa"
BAM="HG002_PacBio_HiFi_35x_2_GRCh38_no_alt.chr20.bam"
BAM="HG003.GRCh38.chr20.pFDA_truthv2.bam"
OUTPUT_VCF="PEPPER_MARGIN_DEEPVARIANT_OUTPUT.vcf.gz"

# Set the number of CPUs to use
THREADS="64"
Expand All @@ -75,81 +76,43 @@ OUTPUT_DIR="${BASE}/output"
## Create local directory structure
mkdir -p "${OUTPUT_DIR}"
mkdir -p "${INPUT_DIR}"
mkdir -p input

# Download the data to input directory
wget -P ${INPUT_DIR} https://storage.googleapis.com/pepper-deepvariant-public/usecase_data/HG002_PacBio_HiFi_35x_2_GRCh38_no_alt.chr20.bam
wget -P ${INPUT_DIR} https://storage.googleapis.com/pepper-deepvariant-public/usecase_data/HG002_PacBio_HiFi_35x_2_GRCh38_no_alt.chr20.bam.bai
wget -P ${INPUT_DIR} https://downloads.pacbcloud.com/public/dataset/HG003/deepvariant-case-study/HG003.GRCh38.chr20.pFDA_truthv2.bam
wget -P ${INPUT_DIR} https://downloads.pacbcloud.com/public/dataset/HG003/deepvariant-case-study/HG003.GRCh38.chr20.pFDA_truthv2.bam.bai
wget -P ${INPUT_DIR} https://storage.googleapis.com/pepper-deepvariant-public/usecase_data/GRCh38_no_alt.chr20.fa
wget -P ${INPUT_DIR} https://storage.googleapis.com/pepper-deepvariant-public/usecase_data/GRCh38_no_alt.chr20.fa.fai
```

##### Step 3: Run PEPPER-Margin to generate a phased bam
```bash
## Pull the docker image to sigularity, this is a 6.6GB download
singularity pull docker://kishwars/pepper_deepvariant:r0.4

# The pull command creates pepper_deepvariant_r0.4.sif file locally
singularity pull docker://kishwars/pepper_deepvariant:r0.6

# Run PEPPER-Margin-DeepVariant
singularity exec --bind /usr/lib/locale/ \
pepper_deepvariant_r0.4.sif \
pepper_deepvariant_r0.6.sif \
run_pepper_margin_deepvariant call_variant \
-b "${INPUT_DIR}/${BAM}" \
-f "${INPUT_DIR}/${REF}" \
-o "${OUTPUT_DIR}" \
-t ${THREADS} \
--ccs

# This generates a Phased bam in the output directory: MARGIN_PHASED.PEPPER_SNP_MARGIN.haplotagged.bam
```
##### Step 4: Run DeepVariant
```bash
PHASED_BAM=MARGIN_PHASED.PEPPER_SNP_MARGIN.haplotagged.bam
OUTPUT_PREFIX="HG002_HiFi_35x_2_GRCh38_PEPPER_Margin_DeepVariant.chr20"
OUTPUT_VCF="HG002_HiFi_35x_2_GRCh38_PEPPER_Margin_DeepVariant.chr20.vcf.gz"

singularity pull docker://google/deepvariant:1.1.0

# The pull command creates deepvariant_1.1.0.sif file locally

singularity exec --bind /usr/lib/locale/ \
deepvariant_1.1.0.sif \
/opt/deepvariant/bin/run_deepvariant \
--model_type=PACBIO \
--ref="${INPUT_DIR}/${REF}" \
--reads="${OUTPUT_DIR}/${PHASED_BAM}" \
--output_vcf="${OUTPUT_DIR}/${OUTPUT_VCF}" \
--num_shards=${THREADS} \
--use_hp_information
```

##### Step 5: Phase the output VCF with Margin (Optional)
```bash
singularity exec --bind /usr/lib/locale/ \
pepper_deepvariant_r0.4.sif \
margin phase \
"${INPUT_DIR}/${BAM}" \
"${INPUT_DIR}/${REF}" \
"${OUTPUT_DIR}/${OUTPUT_VCF}" \
/opt/margin_dir/params/misc/allParams.phase_vcf.json \
-t ${THREADS} \
-M \
-o "${OUTPUT_DIR}/${OUTPUT_PREFIX}"

OUTPUT_PHASED_VCF=${OUTPUT_PREFIX}.phased.vcf
--hifi
```

###### Evaluation using hap.py (Optional)
You can evaluate the variants using `hap.py`.
Download benchmarking data:
```bash
# Set up input data
TRUTH_VCF="HG002_GRCh38_1_22_v4.2.1_benchmark.vcf.gz"
TRUTH_BED="HG002_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed"
TRUTH_VCF="HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz"
TRUTH_BED="HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed"

# Download truth VCFs
wget -P ${INPUT_DIR} https://storage.googleapis.com/pepper-deepvariant-public/usecase_data/HG002_GRCh38_1_22_v4.2.1_benchmark.vcf.gz
wget -P ${INPUT_DIR} https://storage.googleapis.com/pepper-deepvariant-public/usecase_data/HG002_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed
wget -P ${INPUT_DIR} ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv4.2.1/GRCh38/HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed
wget -P ${INPUT_DIR} ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv4.2.1/GRCh38/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz
wget -P ${INPUT_DIR} ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv4.2.1/GRCh38/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi
```

Run hap.py:
Expand Down Expand Up @@ -178,8 +141,8 @@ ${OUTPUT_DIR}/${OUTPUT_VCF} \

| Type | Truth<br>total | True<br>positives | False<br>negatives | False<br>positives | Recall | Precision | F1-Score |
|:-----:|:--------------:|:-----------------:|:------------------:|:------------------:|:--------:|:---------:|:--------:|
| INDEL | 11256 | 11175 | 81 | 94 | 0.992804 | 0.991953 | 0.992378 |
| SNP | 71333 | 71277 | 56 | 8 | 0.999215 | 0.999888 | 0.999551 |
| INDEL | 10628 | 10560 | 68 | 60 | 0.993602 | 0.994576 | 0.994089 |
| SNP | 70166 | 70140 | 26 | 18 | 0.999629 | 0.999744 | 0.999687 |

### Authors:
This pipeline is developed in a collaboration between UCSC genomics institute and the genomics team at Google health.
Loading

0 comments on commit da61114

Please sign in to comment.