-
Notifications
You must be signed in to change notification settings - Fork 243
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' into perplexity
- Loading branch information
Showing
3 changed files
with
427 additions
and
427 deletions.
There are no files selected for viewing
222 changes: 111 additions & 111 deletions
222
keras_nlp/models/distil_bert/distil_bert_masked_lm_preprocessor_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,111 +1,111 @@ | ||
# Copyright 2022 The KerasNLP Authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""Tests for DistilBERT masked language model preprocessor layer.""" | ||
|
||
import tensorflow as tf | ||
|
||
from keras_nlp.backend import keras | ||
from keras_nlp.models.distil_bert.distil_bert_masked_lm_preprocessor import ( | ||
DistilBertMaskedLMPreprocessor, | ||
) | ||
from keras_nlp.models.distil_bert.distil_bert_tokenizer import ( | ||
DistilBertTokenizer, | ||
) | ||
from keras_nlp.tests.test_case import TestCase | ||
|
||
|
||
class DistilBertMaskedLMPreprocessorTest(TestCase): | ||
def setUp(self): | ||
self.vocab = ["[PAD]", "[UNK]", "[CLS]", "[SEP]", "[MASK]"] | ||
self.vocab += ["THE", "QUICK", "BROWN", "FOX"] | ||
self.vocab += ["the", "quick", "brown", "fox"] | ||
|
||
self.preprocessor = DistilBertMaskedLMPreprocessor( | ||
tokenizer=DistilBertTokenizer( | ||
vocabulary=self.vocab, | ||
), | ||
# Simplify our testing by masking every available token. | ||
mask_selection_rate=1.0, | ||
mask_token_rate=1.0, | ||
random_token_rate=0.0, | ||
mask_selection_length=5, | ||
sequence_length=8, | ||
) | ||
|
||
def test_preprocess_strings(self): | ||
input_data = " THE QUICK BROWN FOX." | ||
|
||
x, y, sw = self.preprocessor(input_data) | ||
self.assertAllEqual(x["token_ids"], [2, 4, 4, 4, 4, 4, 3, 0]) | ||
self.assertAllEqual(x["padding_mask"], [1, 1, 1, 1, 1, 1, 1, 0]) | ||
self.assertAllEqual(x["mask_positions"], [1, 2, 3, 4, 5]) | ||
self.assertAllEqual(y, [5, 6, 7, 8, 1]) | ||
self.assertAllEqual(sw, [1.0, 1.0, 1.0, 1.0, 1.0]) | ||
|
||
def test_preprocess_list_of_strings(self): | ||
input_data = [" THE QUICK BROWN FOX."] * 4 | ||
|
||
x, y, sw = self.preprocessor(input_data) | ||
self.assertAllEqual(x["token_ids"], [[2, 4, 4, 4, 4, 4, 3, 0]] * 4) | ||
self.assertAllEqual(x["padding_mask"], [[1, 1, 1, 1, 1, 1, 1, 0]] * 4) | ||
self.assertAllEqual(x["mask_positions"], [[1, 2, 3, 4, 5]] * 4) | ||
self.assertAllEqual(y, [[5, 6, 7, 8, 1]] * 4) | ||
self.assertAllEqual(sw, [[1.0, 1.0, 1.0, 1.0, 1.0]] * 4) | ||
|
||
def test_preprocess_dataset(self): | ||
sentences = tf.constant([" THE QUICK BROWN FOX."] * 4) | ||
ds = tf.data.Dataset.from_tensor_slices(sentences) | ||
ds = ds.map(self.preprocessor) | ||
x, y, sw = ds.batch(4).take(1).get_single_element() | ||
self.assertAllEqual(x["token_ids"], [[2, 4, 4, 4, 4, 4, 3, 0]] * 4) | ||
self.assertAllEqual(x["padding_mask"], [[1, 1, 1, 1, 1, 1, 1, 0]] * 4) | ||
self.assertAllEqual(x["mask_positions"], [[1, 2, 3, 4, 5]] * 4) | ||
self.assertAllEqual(y, [[5, 6, 7, 8, 1]] * 4) | ||
self.assertAllEqual(sw, [[1.0, 1.0, 1.0, 1.0, 1.0]] * 4) | ||
|
||
def test_mask_multiple_sentences(self): | ||
sentence_one = tf.constant(" THE QUICK") | ||
sentence_two = tf.constant(" BROWN FOX.") | ||
|
||
x, y, sw = self.preprocessor((sentence_one, sentence_two)) | ||
self.assertAllEqual(x["token_ids"], [2, 4, 4, 3, 4, 4, 4, 3]) | ||
self.assertAllEqual(x["padding_mask"], [1, 1, 1, 1, 1, 1, 1, 1]) | ||
self.assertAllEqual(x["mask_positions"], [1, 2, 4, 5, 6]) | ||
self.assertAllEqual(y, [5, 6, 7, 8, 1]) | ||
self.assertAllEqual(sw, [1.0, 1.0, 1.0, 1.0, 1.0]) | ||
|
||
def test_no_masking_zero_rate(self): | ||
no_mask_preprocessor = DistilBertMaskedLMPreprocessor( | ||
self.preprocessor.tokenizer, | ||
mask_selection_rate=0.0, | ||
mask_selection_length=5, | ||
sequence_length=8, | ||
) | ||
input_data = " THE QUICK BROWN FOX." | ||
|
||
x, y, sw = no_mask_preprocessor(input_data) | ||
self.assertAllEqual(x["token_ids"], [2, 5, 6, 7, 8, 1, 3, 0]) | ||
self.assertAllEqual(x["padding_mask"], [1, 1, 1, 1, 1, 1, 1, 0]) | ||
self.assertAllEqual(x["mask_positions"], [0, 0, 0, 0, 0]) | ||
self.assertAllEqual(y, [0, 0, 0, 0, 0]) | ||
self.assertAllEqual(sw, [0.0, 0.0, 0.0, 0.0, 0.0]) | ||
|
||
def test_serialization(self): | ||
config = keras.saving.serialize_keras_object(self.preprocessor) | ||
new_preprocessor = keras.saving.deserialize_keras_object(config) | ||
self.assertEqual( | ||
new_preprocessor.get_config(), | ||
self.preprocessor.get_config(), | ||
) | ||
# Copyright 2022 The KerasNLP Authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""Tests for DistilBERT masked language model preprocessor layer.""" | ||
|
||
import tensorflow as tf | ||
|
||
from keras_nlp.backend import keras | ||
from keras_nlp.models.distil_bert.distil_bert_masked_lm_preprocessor import ( | ||
DistilBertMaskedLMPreprocessor, | ||
) | ||
from keras_nlp.models.distil_bert.distil_bert_tokenizer import ( | ||
DistilBertTokenizer, | ||
) | ||
from keras_nlp.tests.test_case import TestCase | ||
|
||
|
||
class DistilBertMaskedLMPreprocessorTest(TestCase): | ||
def setUp(self): | ||
self.vocab = ["[PAD]", "[UNK]", "[CLS]", "[SEP]", "[MASK]"] | ||
self.vocab += ["THE", "QUICK", "BROWN", "FOX"] | ||
self.vocab += ["the", "quick", "brown", "fox"] | ||
|
||
self.preprocessor = DistilBertMaskedLMPreprocessor( | ||
tokenizer=DistilBertTokenizer( | ||
vocabulary=self.vocab, | ||
), | ||
# Simplify our testing by masking every available token. | ||
mask_selection_rate=1.0, | ||
mask_token_rate=1.0, | ||
random_token_rate=0.0, | ||
mask_selection_length=5, | ||
sequence_length=8, | ||
) | ||
|
||
def test_preprocess_strings(self): | ||
input_data = " THE QUICK BROWN FOX." | ||
|
||
x, y, sw = self.preprocessor(input_data) | ||
self.assertAllEqual(x["token_ids"], [2, 4, 4, 4, 4, 4, 3, 0]) | ||
self.assertAllEqual(x["padding_mask"], [1, 1, 1, 1, 1, 1, 1, 0]) | ||
self.assertAllEqual(x["mask_positions"], [1, 2, 3, 4, 5]) | ||
self.assertAllEqual(y, [5, 6, 7, 8, 1]) | ||
self.assertAllEqual(sw, [1.0, 1.0, 1.0, 1.0, 1.0]) | ||
|
||
def test_preprocess_list_of_strings(self): | ||
input_data = [" THE QUICK BROWN FOX."] * 4 | ||
|
||
x, y, sw = self.preprocessor(input_data) | ||
self.assertAllEqual(x["token_ids"], [[2, 4, 4, 4, 4, 4, 3, 0]] * 4) | ||
self.assertAllEqual(x["padding_mask"], [[1, 1, 1, 1, 1, 1, 1, 0]] * 4) | ||
self.assertAllEqual(x["mask_positions"], [[1, 2, 3, 4, 5]] * 4) | ||
self.assertAllEqual(y, [[5, 6, 7, 8, 1]] * 4) | ||
self.assertAllEqual(sw, [[1.0, 1.0, 1.0, 1.0, 1.0]] * 4) | ||
|
||
def test_preprocess_dataset(self): | ||
sentences = tf.constant([" THE QUICK BROWN FOX."] * 4) | ||
ds = tf.data.Dataset.from_tensor_slices(sentences) | ||
ds = ds.map(self.preprocessor) | ||
x, y, sw = ds.batch(4).take(1).get_single_element() | ||
self.assertAllEqual(x["token_ids"], [[2, 4, 4, 4, 4, 4, 3, 0]] * 4) | ||
self.assertAllEqual(x["padding_mask"], [[1, 1, 1, 1, 1, 1, 1, 0]] * 4) | ||
self.assertAllEqual(x["mask_positions"], [[1, 2, 3, 4, 5]] * 4) | ||
self.assertAllEqual(y, [[5, 6, 7, 8, 1]] * 4) | ||
self.assertAllEqual(sw, [[1.0, 1.0, 1.0, 1.0, 1.0]] * 4) | ||
|
||
def test_mask_multiple_sentences(self): | ||
sentence_one = tf.constant(" THE QUICK") | ||
sentence_two = tf.constant(" BROWN FOX.") | ||
|
||
x, y, sw = self.preprocessor((sentence_one, sentence_two)) | ||
self.assertAllEqual(x["token_ids"], [2, 4, 4, 3, 4, 4, 4, 3]) | ||
self.assertAllEqual(x["padding_mask"], [1, 1, 1, 1, 1, 1, 1, 1]) | ||
self.assertAllEqual(x["mask_positions"], [1, 2, 4, 5, 6]) | ||
self.assertAllEqual(y, [5, 6, 7, 8, 1]) | ||
self.assertAllEqual(sw, [1.0, 1.0, 1.0, 1.0, 1.0]) | ||
|
||
def test_no_masking_zero_rate(self): | ||
no_mask_preprocessor = DistilBertMaskedLMPreprocessor( | ||
self.preprocessor.tokenizer, | ||
mask_selection_rate=0.0, | ||
mask_selection_length=5, | ||
sequence_length=8, | ||
) | ||
input_data = " THE QUICK BROWN FOX." | ||
|
||
x, y, sw = no_mask_preprocessor(input_data) | ||
self.assertAllEqual(x["token_ids"], [2, 5, 6, 7, 8, 1, 3, 0]) | ||
self.assertAllEqual(x["padding_mask"], [1, 1, 1, 1, 1, 1, 1, 0]) | ||
self.assertAllEqual(x["mask_positions"], [0, 0, 0, 0, 0]) | ||
self.assertAllEqual(y, [0, 0, 0, 0, 0]) | ||
self.assertAllEqual(sw, [0.0, 0.0, 0.0, 0.0, 0.0]) | ||
|
||
def test_serialization(self): | ||
config = keras.saving.serialize_keras_object(self.preprocessor) | ||
new_preprocessor = keras.saving.deserialize_keras_object(config) | ||
self.assertEqual( | ||
new_preprocessor.get_config(), | ||
self.preprocessor.get_config(), | ||
) |
Oops, something went wrong.