- Name: Kent010341 (Nickname using on internet)
- e-mail: [email protected]
- kernel: string or callable method, optional (default='rbf')
- Kernel type, currently support linear, rbf kernel and custom kernel.
- Custom kernel must satisfy the Mercer's conditions.
- C: float, optional (default=1)
- Penalty parameter C of the error term.
- gamma: float, optional (default='auto')
- Coefficient of kernel like rbf kernel.
- epsilon: float, optional (default=0.1)
- Epsilon in epsilon-SVR
- max_iter: int, optional (default=-1)
- Maximum iterations to solving problem, using -1 for no limit.
- debug: bool, optional (default=False)
- Print all traininig detail if debug is True.
- random_seed: int, optional (default=0)
- Seed for numpy.random.seed and random.seed.
- kerneled_matrix: 2-D array
- Training set after kernel transfer.
- alphas: array
- Coefficients of the support vector.
- b: float
- Bias of the prediction function.
- get_params(self):
- Print the parameters set by initially defined.
- fit(self, train_X, train_y):
- Fit the model according to the given training data.
- predict(self, test_X):
- Perform regression on testing input.
- Can only be used if the model is fit or loaded.
- save_model(self, save_dir='default', file_name='default'):
- Save the trained model as json form. Defaultly using "trained_models" as save_dir and time form as file_name.
- load_model(self, file_dir):
- Load the trained model.