- Overview - What is the firewall module?
- Module description - What does the module do?
- Setup - The basics of getting started with firewall
- Usage - Configuration and customization options
- Reference - An under-the-hood peek at what the module is doing
- Limitations - OS compatibility, etc.
- Firewall_multi - Arrays for certain parameters
- Development - Guide for contributing to the module
The firewall module lets you manage firewall rules with Puppet.
PuppetLabs' firewall module introduces the firewall
resource, which is used to manage and configure firewall rules from within the Puppet DSL. This module offers support for iptables and ip6tables. The module also introduces the firewallchain
resource, which allows you to manage chains or firewall lists and ebtables for bridging support. At the moment, only iptables and ip6tables chains are supported.
The firewall module acts on your running firewall, making immediate changes as the catalog executes. Defining default pre and post rules allows you to provide global defaults for your hosts before and after any custom rules. Defining pre
and post
rules is also necessary to help you avoid locking yourself out of your own boxes when Puppet runs.
- Every node running a firewall
- Firewall settings in your system
- Connection settings for managed nodes
- Unmanaged resources (get purged)
Firewall uses Ruby-based providers, so you must enable pluginsync.
In the following two sections, you create new classes and then create firewall rules related to those classes. These steps are optional but provide a framework for firewall rules, which is helpful if you’re just starting to create them.
If you already have rules in place, then you don’t need to do these two sections. However, be aware of the ordering of your firewall rules. The module will dynamically apply rules in the order they appear in the catalog, meaning a deny rule could be applied before the allow rules. This might mean the module hasn’t established some of the important connections, such as the connection to the Puppet master.
The following steps are designed to ensure that you keep your SSH and other connections, primarily your connection to your Puppet master. If you create the pre
and post
classes described in the first section, then you also need to create the rules described in the second section.
This approach employs a whitelist setup, so you can define what rules you want and everything else is ignored rather than removed.
The code in this section does the following:
- The 'require' parameter in
firewall {}
ensuresmy_fw::pre
is run before any other rules. - In the
my_fw::post
class declaration, the 'before' parameter ensuresmy_fw::post
is run after any other rules.
The rules in the pre
and post
classes are fairly general. These two classes ensure that you retain connectivity and that you drop unmatched packets appropriately. The rules you define in your manifests are likely to be specific to the applications you run.
- Add the
pre
class tomy_fw/manifests/pre.pp
, and any default rules to your pre.pp file first — in the order you want them to run.
class my_fw::pre {
Firewall {
require => undef,
}
# Default firewall rules
firewall { '000 accept all icmp':
proto => 'icmp',
action => 'accept',
}->
firewall { '001 accept all to lo interface':
proto => 'all',
iniface => 'lo',
action => 'accept',
}->
firewall { '002 reject local traffic not on loopback interface':
iniface => '! lo',
proto => 'all',
destination => '127.0.0.1/8',
action => 'reject',
}->
firewall { '003 accept related established rules':
proto => 'all',
state => ['RELATED', 'ESTABLISHED'],
action => 'accept',
}
}
The rules in pre
allow basic networking (such as ICMP and TCP) and ensure that existing connections are not closed.
- Add the
post
class tomy_fw/manifests/post.pp
and include any default rules — apply these last.
class my_fw::post {
firewall { '999 drop all':
proto => 'all',
action => 'drop',
before => undef,
}
}
Alternatively, the firewallchain type can be used to set the default policy:
firewallchain { 'INPUT:filter:IPv4':
ensure => present,
policy => drop,
before => undef,
}
The rules you create here are helpful if you don’t have any existing rules; they help you order your firewall configurations so you don’t lock yourself out of your box.
Rules are persisted automatically between reboots, although there are known issues with ip6tables on older Debian/Ubuntu distributions. There are also known issues with ebtables.
- In site.pp or another top-scope file, add the following code to set up a metatype to purge unmanaged firewall resources. This will clear any existing rules and make sure that only rules defined in Puppet exist on the machine.
resources { 'firewall':
purge => true,
}
To purge unmanaged firewall chains, add:
resources { 'firewallchain':
purge => true,
}
Note - If there are unmanaged rules in unmanaged chains, it will take two Puppet runs for the firewall chain to be purged. This is different than the purge
parameter available in firewallchain
.
- Use the following code to set up the default parameters for all of the firewall rules that you will establish later. These defaults will ensure that the
pre
andpost
classes are run in the correct order and avoid locking you out of your box during the first Puppet run.
Firewall {
before => Class['my_fw::post'],
require => Class['my_fw::pre'],
}
- Declare the
my_fw::pre
andmy_fw::post
classes to satisfy dependencies. You can declare these classes using an external node classifier or the following code:
class { ['my_fw::pre', 'my_fw::post']: }
- Include the
firewall
class to ensure the correct packages are installed:
class { 'firewall': }
Use these steps if you already have a version of the firewall module installed.
Upgrade the module with the puppet module tool as normal:
puppet module upgrade puppetlabs/firewall
There are two kinds of firewall rules you can use with firewall: default rules and application-specific rules. Default rules apply to general firewall settings, whereas application-specific rules manage firewall settings for a specific application, node, etc.
All rules employ a numbering system in the resource's title that is used for ordering. When titling your rules, make sure you prefix the rule with a number, for example, '000 accept all icmp requests'. 000 runs first, 999 runs last.
Note: The ordering range 9000-9999 is reserved for unmanaged rules. Do not specify any firewall rules in this range.
You can place default rules in either my_fw::pre
or my_fw::post
, depending on when you would like them to run. Rules placed in the pre
class will run first, and rules in the post
class, last.
In iptables, the title of the rule is stored using the comment feature of the underlying firewall subsystem. Values must match '/^\d+[[:graph:][:space:]]+$/'.
Basic accept ICMP request example:
firewall { '000 accept all icmp requests':
proto => 'icmp',
action => 'accept',
}
Drop all:
firewall { '999 drop all other requests':
action => 'drop',
}
IPv6 rules can be specified using the ip6tables provider:
firewall { '006 Allow inbound SSH (v6)':
dport => 22,
proto => tcp,
action => accept,
provider => 'ip6tables',
}
Puppet doesn't care where you define rules, and this means that you can place your firewall resources as close to the applications and services that you manage as you wish. If you use the roles and profiles pattern then it makes sense to create your firewall rules in the profiles, so they remain close to the services managed by the profile.
This is an example of firewall rules in a profile:
class profile::apache {
include apache
apache::vhost { 'mysite': ensure => present }
firewall { '100 allow http and https access':
dport => [80, 443],
proto => tcp,
action => accept,
}
}
Firewall rules may be inverted by prefixing the value of a parameter by "! ". If the value is an array, then every item in the array must be prefixed as iptables does not understand inverting a single value.
Parameters that understand inversion are: connmark, ctstate, destination, dport, dst_range, dst_type, iniface, outiface, port, proto, source, sport, src_range, src_type, and state.
Examples:
firewall { '001 disallow esp protocol':
action => 'accept',
proto => '! esp',
}
firewall { '002 drop NEW external website packets with FIN/RST/ACK set and SYN unset':
chain => 'INPUT',
state => 'NEW',
action => 'drop',
proto => 'tcp',
sport => ['! http', '! 443'],
source => '! 10.0.0.0/8',
tcp_flags => '! FIN,SYN,RST,ACK SYN',
}
You can apply firewall rules to specific nodes. Usually, you should put the firewall rule in another class and apply that class to a node. Apply a rule to a node as follows:
node 'some.node.com' {
firewall { '111 open port 111':
dport => 111,
}
}
You can also do more complex things with the firewall
resource. This example sets up static NAT for the source network 10.1.2.0/24:
firewall { '100 snat for network foo2':
chain => 'POSTROUTING',
jump => 'MASQUERADE',
proto => 'all',
outiface => 'eth0',
source => '10.1.2.0/24',
table => 'nat',
}
You can also change the TCP MSS value for VPN client traffic:
firewall { '110 TCPMSS for VPN clients':
chain => 'FORWARD',
table => 'mangle',
source => '10.0.2.0/24',
proto => tcp,
tcp_flags => 'SYN,RST SYN',
mss => '1361:1541',
set_mss => '1360',
jump => 'TCPMSS',
}
The following will mirror all traffic sent to the server to a secondary host on the LAN with the TEE target:
firewall { '503 Mirror traffic to IDS':
proto => all,
jump => 'TEE',
gateway => '10.0.0.2',
chain => 'PREROUTING',
table => 'mangle',
}
The following example creates a new chain and forwards any port 5000 access to it.
firewall { '100 forward to MY_CHAIN':
chain => 'INPUT',
jump => 'MY_CHAIN',
}
# The namevar here is in the format chain_name:table:protocol
firewallchain { 'MY_CHAIN:filter:IPv4':
ensure => present,
}
firewall { '100 my rule':
chain => 'MY_CHAIN',
action => 'accept',
proto => 'tcp',
dport => 5000,
}
Setup NFLOG for a rule.
firewall {'666 for NFLOG':
proto => 'all',
jump => 'NFLOG',
nflog_group => 3,
nflog_prefix => "nflog-test",
nflog_range = 256,
nflog_threshold => 1,
}
Access the inline documentation:
puppet describe firewall
Or
puppet doc -r type
(and search for firewall)
For information on the classes and types, see the REFERENCE.md. For information on the facts, see below.
Facts:
A Facter fact that can be used to determine what the default version of ip6tables is for your operating system/distribution.
A Facter fact that can be used to determine what the default version of iptables is for your operating system/distribution.
Retrieves the version of iptables-persistent from your OS. This is a Debian/Ubuntu specific fact.
For an extensive list of supported operating systems, see metadata.json
The socket
parameter is not supported on SLES. In this release it will cause
the catalog to fail with iptables failures, rather than correctly warn you that
the features are unusable.
The socket
and owner
parameters are unsupported on Oracle Enterprise Linux
when the "Unbreakable" kernel is used. These may function correctly when using
the stock RedHat kernel instead. Declaring either of these parameters on an
unsupported system will result in iptable rules failing to apply.
You might sometimes need to pass arrays, such as arrays of source or destination addresses, to some parameters in contexts where iptables itself does not allow arrays.
A community module, alexharvey-firewall_multi, provides a defined type wrapper to spawn firewall resources for arrays of certain inputs.
For example:
firewall_multi { '100 allow http and https access':
source => [
'10.0.10.0/24',
'10.0.12.0/24',
'10.1.1.128',
],
dport => [80, 443],
proto => tcp,
action => accept,
}
For more information see the documentation at alexharvey-firewall_multi.
Firewall rules appear in reverse order if you use MCollective to run Puppet in Puppet Enterprise 2016.1, 2015.3, 2015.2, or 3.8.x.
If you use MCollective to kick off Puppet runs (mco puppet runonce -I agent.example.com
) while also using the puppetlabs/firewall
module, your firewall rules might be listed in reverse order.
In many firewall configurations, the last rule drops all packets. If the rule order is reversed, this rule is listed first and network connectivity fails.
To prevent this issue, do not use MCollective to kick off Puppet runs. Use any of the following instead:
- Run
puppet agent -t
on the command line. - Use a cron job.
- Click Run Puppet in the console.
Report found bugs in JIRA:
Puppet modules on the Puppet Forge are open projects, and community contributions are essential for keeping them great. We can’t access the huge number of platforms and myriad of hardware, software, and deployment configurations that Puppet is intended to serve.
We want to keep it as easy as possible to contribute changes so that our modules work in your environment. There are a few guidelines that we need contributors to follow so that we can have a chance of keeping on top of things.
Read the module's CONTRIBUTING.md before contributing.
This module supports:
- iptables
- ip6tables
- ebtables (chains only)
Make sure you have:
- rake
- bundler
Install the necessary gems:
bundle install
And run the tests from the root of the source code:
bundle exec rake parallel_spec
See also .travis.yml
for information on running the acceptance and other tests.