Skip to content

jopvanraaij/degiro-connector

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

1. Degiro Connector

This is yet another library to access Degiro's API.

1.1. Which features ?

Here are the features you can access through this library :

Endpoint Feature(s)
AccountInfo Retrieve a table containing : "clientId" and Currencies.
AccountOverview Retrieve all the CashMovements between two dates.
Bonds
ETFs
Funds
Futures
Leverageds
Lookup
Options
Stocks
Warrants
Search list of products according their name, type and other criterias.
For instance all the stocks from NASDAQ 100.
Chart Retrieve chart data.
ClientDetails Retrieve a table containing : "clientId", "intAccount" and other account information.
CompanyProfile Retrieve a company's profile using its ISIN code.
CompanyRatios Retrieve a company's ratios using its ISIN code.
Config Retrieve a table containing : "clientId" and URLs which are constitutive of Degiro's API.
Favourites Retrieve favorite products lists.
FinancialStatements Retrieve a company's financial statements using its ISIN code.
LatestNews Retrieve latest news about all the companies.
LoginQuotecast Establish a connection for quotecast operations.
LoginTrading Establish a connection for trading operations.
LogoutTrading Destroy previously established connection for trading operations.
NewsByCompany Retrieve news related to a specific company.
Order Create, update, delete an Order.
OrderHistory Retrieve all Orders created between two dates.
Orders List pending Orders.
Portoflio List products in your Portoflio.
ProductsConfig Retrieve a table containing : useful parameters to filter products.
ProductsInfo Search for products using their ids.
Quotecasts Fetch real-time data on financial products.
For instance the real-time stock Price.
TopNewsPreview Retrieve some news preview about all the companies.
TotalPorfolio Retrieve aggregated information about your assets.
TransactionsHistory Retrieve all Transactions created between two dates.

1.2. How to install ?

pip install degiro-connector

1.3. How to upgrade ?

pip install --no-cache-dir --upgrade degiro-connector

1.4. How to uninstall ?

pip uninstall degiro-connector

1.5. Table of contents

2. Real-time data

It is possible to fetch a stream of data in real-time from Degiro's API.

For instance if one needs the following data from the "AAPL" stock :

  • LastDate
  • LastTime
  • LastPrice
  • LastVolume

He can use this library to retrieve update like this :

LastDate    LastTime    LastPrice LastVolume
2020-11-13  22:00:00    119.26    4697040

2.1. What are the workflows ?

This is the workflow for consuming real-time data-stream :

A. Find your "user_token".
B. Setup the API object with your "user_token".
C. Connect.
D. Subscribe to data-stream.
E. Fetch data-stream.

This is the worflow for consuming charts :

A. Find your "user_token".
B. Setup the API object with your "user_token".
C. Fetch charts.

All the details of these steps are explained in the rest of this section.

2.2. What are the credentials ?

The only credential you need in order to fetch real-time data and charts is the :

  • user_token

Beware, these two identifiers are not the same thing :

  • user_token : used to fetch real-time data and charts.
  • int_account : used for some trading operations.

2.3. How to find your : user_token ?

You can find your "user_token" inside one of these tables :

  • "Config" : attribute "clientId"
  • "ClientDetails" : attribute "id"

See section related to "Config" and "ClientDetails" tables.

2.4. How to login ?

In order to fetch data you need to establish a connection.

You can use the following code to connect :

# SETUP QUOTECAST API
quotecast_api = API(user_token=YOUR_USER_TOKEN)

# CONNECTION
quotecast_api.connect()

2.5. Is there a timeout ?

Connection timeout is around 15 seconds.

Which means a connection will cease to work after this timeout.

This timeout is reset each time you use this connection to :

  • Subscribe to a metric (for instance a stock Price)
  • Fetch the data-stream

So if you use it nonstop (in a loop) you won't need to reconnect.

2.6. How to subscribe to a data-stream ?

To subscribe to a data-stream you need to setup a Request message.

A Request has the following parameters :

Parameter Type Description
subscriptions MessageMap List of products and metrics to subscribe to.
unsubscriptions MessageMap List of products and metrics to unsubscribe to.

Here is an example of request :

request = Quotecast.Request()
request.subscriptions['360015751'].extend([
    'LastDate',
    'LastTime',
    'LastPrice',
    'LastVolume',
    'LastPrice',
    'AskPrice',
    'BidPrice',
])
request.subscriptions['AAPL.BATS,E'].extend([
    'LastDate',
    'LastTime',
    'LastPrice',
    'LastVolume',
    'LastPrice',
    'AskPrice',
    'BidPrice',
])

Once you have built this Request object you can send it to Degiro's API like this :

quotecast_api.subscribe(request=request)

For more comprehensive examples : realtime_poller.py / realtime_one_shot.py

2.7. How to unsubscribe to a data-stream ?

To remove metrics from the data-stream you need to setup a Request message.

If you try to unsubscribe to a metric to which you didn't subscribed previously it will most likely have no impact.

A Request has the following parameters :

Parameter Type Description
subscriptions MessageMap List of products and metrics to subscribe to.
unsubscriptions MessageMap List of products and metrics to unsubscribe to.

Here is an example of request :

request = Quotecast.Request()
request.unsubscriptions['360015751'].extend([
    'LastDate',
    'LastTime',
    'LastPrice',
    'LastVolume',
    'LastPrice',
    'AskPrice',
    'BidPrice',
])
request.unsubscriptions['AAPL.BATS,E'].extend([
    'LastDate',
    'LastTime',
    'LastPrice',
    'LastVolume',
    'LastPrice',
    'AskPrice',
    'BidPrice',
])

Once you have built this Request object you can send it to Degiro's API like this :

quotecast_api.subscribe(request=request)

For more comprehensive examples : realtime_poller.py / realtime_one_shot.py

2.8. How to fetch the data ?

You can use the following code :

quotecast = quotecast_api.fetch_data()

For a more comprehensive example : realtime_poller.py

2.9. How to use this data ?

Received data is a Quotecast object with the following properties :

Parameter Type Description
json_data dict Dictionnary representation of what Degiro's API has sent.
metadata Metadata Containing the "response_datetime" and "request_duration".

Here is how to access these properties :

json_data = quotecast.json_data
response_datetime = quotecast.metadata.response_datetime
request_duration= quotecast.metadata.request_duration

2.10. Which are the available data types ?

This library provides the tools to convert Degiro's JSON data into something more programmer-friendly.

Here is the list of available data type :

Type Description
Ticker Protobuf message (for GRPC).
Dictionnaries Standard Python Dictionaries : dict.
DataFrame DataFrame from the library Pandas.

Here is how to build each type :

# UPDATE PARSER
quotecast_parser.put_quotecast(quotecast=quotecast)

# BUILD TICKER
ticker = quotecast_parser.ticker

# BUILD DICT
ticker_dict = quotecast_parser.ticker_dict

# BUILD PANDAS.DATAFRAME
ticker_df = quotecast_parser.ticker_df

2.11. What is a Ticker ?

The generated Ticker contains :

Parameter Type Description
metadata Metadata Containing the "response_datetime" and "request_duration".
products MessageMap Dictionnary like object containing the metrics group by "vwd_id".
product_list RepeatedScalarFieldContainer List of available "vwd_id".

Here are some operations available :

product = '360015751'
metric_name = 'LastPrice'

# ACCESS SPECIFIC PRODUCT
product = ticker.products[product]

# ACCESS SPECIFIC METRIC
metric = product[metric_name]

# LOOP OVER PRODUCTS
for product in ticker.products:
    product = ticker.products[product]

# LOOP OVER METRICS
for metric_name in product.metrics:
    metric = product.metrics[metric_name]

A Ticker is a custom Protocol Buffer Message built for this library.

It can be transmitted over GRPC framework.

2.12. What is inside the Dictionnary ?

The dictionnary representation of a ticker contains the metrics grouped by "vwd_id" (product id), with :

  • keys : vwd_id
  • values : another dictionnary with the metrics concerning this specific product.

Example - Dictionnary :

{
    '360114899': {
        'vwd_id': 360114899,
        'response_datetime': '2020-11-08 12:00:27',
        'request_duration': 1.0224891666870117,
        'LastDate': '2020-11-06',
        'LastTime': '17:36:17',
        'LastPrice': '70.0',
        'LastVolume': '100'
    },
    '360015751': {
        'vwd_id': 360015751,
        'response_datetime': '2020-11-08 12:00:27',
        'request_duration': 1.0224891666870117,
        'LastDate': '2020-11-06',
        'LastTime': '17:36:17',
        'LastPrice': '22.99',
        'LastVolume': '470'
    }
}

2.13. What is inside the DataFrame ?

The generated DataFrame will content :

  • In rows : the product, for instance the "AAPL" stock which has "vwd_id" = "AAPL.BATS,E".
  • In columns : the product's parameters for instance "LastPrice", "LastVolume"...

Example - DataFrame :

       vwd_id    response_datetime  request_duration    LastDate  LastTime LastPrice LastVolume
0   360114899  2020-11-08 12:00:27          1.022489  2020-11-06  17:39:57      70.0        100
1   360015751  2020-11-08 12:00:27          1.022489  2020-11-06  17:36:17     22.99        470

2.14. How to get chart data ?

You can fetch an object containing the same data than in Degiro's website graph.

For that you need to prepare a Chart.Request object.

Here is a table with the available attributes for Chart.Request.

Parameter Type Description
requestid str It sends you back whatever string you put here, you can set it to : "1".
resolution Chart.Resolution Resolution of the chart like : Chart.Resolution.PT1M.
culture str Country code like : "en-US" or "fr-FR".
period Chart.Period Period of the chart, like : Chart.Period.P1D.
series repeated string Data to get like : ['issueid:36014897', 'price:issueid:360148977'].
tz str Timezone like : "Europe/Paris"

Example of code :

request = Chart.Request()
request.requestid = '1'
request.resolution = Chart.Resolution.PT1M
request.culture = 'fr-FR'
request.series.append('issueid:360148977')
request.series.append('price:issueid:360148977')
request.series.append('ohlc:issueid:360148977')
request.series.append('volume:issueid:360148977')
request.period = Chart.Period.P1D
request.tz = 'Europe/Paris'

chart = quotecast_api.get_chart(request=request)

All the options for the enumerations are available in this file : quotecast.proto

For a more comprehensive example : chart.py

3. Trading connection

This library contains two main modules :

  • quotecast : to consume real-time financial data.
  • trading : to manage your Degiro's account.

The module quotecast is described in the section related to real-time data.

The rest of this document will only refer to the module : trading.

3.1. How to login ?

In order to use the module trading.api you need to establish a connection.

Check the section related to int_account to understand how to get yours.

Here is how to connect :

# SETUP CREDENTIALS
credentials = Credentials(
    username = YOUR_USERNAME,
    password = YOUR_PASSWORD,
    int_account = YOUR_INT_ACCOUNT,  # OPTIONAL FOR LOGIN
)

# SETUP TRADING API
trading_api = API(credentials=credentials)

# ESTABLISH CONNECTION
trading_api.connect()

For a more comprehensive example : connection.py

3.2. How to logout ?

Once you no longer need to use the API you can destroy your connection.

You can use the following code to disconnect :

# DESTROY CONNECTION
quotecast_api.logout()

For a more comprehensive example : logout.py

3.3. What are the credentials ?

Some credentials are required to use Degiro's trading API.

Here are these credentials :

Parameter Type Description
username str Username used to log into Degiro's website.
password str Password used to log into Degiro's website.
int_account int OPTIONAL : unique identifier of the account : used by Degiro's server.
totp_secret_key str OPTIONAL : used for Two-factor Authentication (2FA).
one_time_password str OPTIONAL : used for Two-factor Authentication (2FA).

Check the section related to int_account to understand how to get yours.

Check the section related to 2FA if you want to know more about these two parameters :

  • totp_secret_key
  • one_time_password

3.3. How to find your : int_account ?

To get your int_acccount you can run this example : client_details_table.py

See section related to ClientDetails table for more details.

This int_acccount is required to do most of the trading operations available in this connector.

Here are some operations for which your int_acccount is not required :

  • Connection
  • Fetch table : ClientDetails
  • Fetch table : Config

Beware, these two identifiers are not the same thing :

  • user_token : used to fetch real-time data and charts.
  • int_account : used for some trading operations.

3.4. How to use 2FA ?

First I will briefly explain what is : Two-Factor Authentication (2FA).

I recommend to skip a few paragraphs if you already know what is 2FA.

When you do a standard connection you are providing two parameters, which are your :

  • username
  • password

But if you use Two-Factor Authentication (2FA) you need to provide an additional parameter, which is your :

  • one_time_password

This one_time_password has a validity of 30 secondes and is generated using a totp_secret_key code.

This totp_secret_key code is giving to you by Degiro's website when you enabled 2FA : in the form of a QRCode.

Usually you put this QRCode inside an app like ‎Google Authenticator.

Then this app will generate a new one_time_password that you can use for each connection.

To use 2FA with this library you have two choices.

CHOICE A

Provide your totp_secret_key : the library will use it to generate a new one_time_password at each connection.

So you won't have to type your one_time_password manually at each connection.

This is the proper way.

See the section about totp_secret_key to understand how to get yours.

Here is an example of connection with the totp_secret_key :

# SETUP CREDENTIALS
credentials = Credentials(
    username=YOUR_USERNAME,
    password=YOUR_PASSWORD,
    int_account=YOUR_INT_ACCOUNT,  # OPTIONAL FOR LOGIN
    totp_secret_key=YOUR_2FA_SECRET_KEY,  # ONLY IF 2FA IS ENABLED
)

# SETUP TRADING API
trading_api = API(credentials=credentials)

# ESTABLISH CONNECTION
trading_api.connect()

A complete example here : connection_2fa.py

CHOICE B

Provide a new one_time_password at each connection.

Here is an example of connection with the one_time_password :

# SETUP CREDENTIALS
credentials = Credentials(
    username=YOUR_USERNAME,
    password=YOUR_PASSWORD,
    int_account=YOUR_INT_ACCOUNT,  # OPTIONAL FOR LOGIN
    one_time_password=YOUR_2FA_OTP,  # ONLY IF 2FA IS ENABLED
)

# SETUP TRADING API
trading_api = API(credentials=credentials)

# ESTABLISH CONNECTION
trading_api.connect()

A complete example here : connection_otp.py

3.5. How to find your : totp_secret_key ?

The parameter totp_secret_key is only required if you have enabled 2FA on Degiro's website.

When you try to activate 2FA on Degiro's website, it displays a QRCode.

This QRCode changes at each activation.

A QRCode is a picture which can be converted into a text.

You can download this QRCode and use a tool to extract the text from it.

This extracted text will look like this :

otpauth://totp/DEGIRO:YOUR_USERNAME?algorithm=SHA1&issuer=DEGIRO&secret=YOUR_TOPT_SECRET_KEY&digits=6&period=30

Has you can guess the "totp_secret_key" is in this part :

secret=YOUR_TOPT_SECRET_KEY

Here is an example of script to extract the text from a QRCode : qrcode.py

3.6. How to find your : one_time_password ?

The parameter one_time_password is the password you type when you log in the website using 2FA.

Usually you get it through an app like Google Authenticator.

It is preferable to use the parameter totp_secret_key instead of one_time_password.

3.7. Is there a timeout ?

The connection for trading operations seems to have a timeout of : around 30 minutes.

If this connection is left unused for this amount of time it will cease to work.

Each time you do an operation using this connection Degiro's API seems to reset the timeout.

4. Order

Here are the main parameters of an Order.

Parameter Type Description
action Order.Action Whether you want to : BUY or SELL.
order_type Order.OrderType Type of order : LIMIT, STOP_LIMIT, MARKET or STOP_LOSS.
price float Price of the order.
product_id int Identifier of the product concerned by the order.
size float Size of the order.
time_type Order.TimeType Duration of the order : GOOD_TILL_DAY or GOOD_TILL_CANCELED

The full description of an Order is available here : trading.proto

4.1. How to create an Order ?

The Order creation is done in two step :

  • Checking : send the Order to the API to check if it is valid.
  • Confirmation : confirm the creation of the Order.

Keeping these two steps (instead of reducing to one single "create" function) provides more options.

Here are the parameters of a CheckingResponse :

Parameter Type Description
confirmation_id str Id necessary to confirm the creation of the Order.
free_space_new float New free space (balance) if the Order is confirmed.
response_datetime Timestamp Timestamp can be converted to date string using : ToJsonString().
transaction_fees repeated Struct Transaction fees that will be applied to the Order.
transaction_opposite_fees repeated Struct Other kind of fees that will be applied to the Order.
transaction_taxes repeated Struct Taxes that will be applied to the Order.

Here are the parameters of a ConfirmationResponse :

Parameter Type Description
orderId str Id of the created Order.
response_datetime Timestamp Timestamp can be converted to date string using : ToJsonString().

Here is an example :

# SETUP ORDER
order = Order(
    action=Order.Action.BUY,
    order_type=Order.OrderType.LIMIT,
    price=10,
    product_id=71981,
    size=1,
    time_type=Order.TimeType.GOOD_TILL_DAY,
)

# FETCH CHECKING_RESPONSE
checking_response = trading_api.check_order(order=order)

# EXTRACT CONFIRMATION_ID
confirmation_id = checking_response.confirmation_id

# SEND CONFIRMATION
confirmation_response = trading_api.confirm_order(
    confirmation_id=confirmation_id,
    order=order,
)

For a more comprehensive example : order.py

4.2. How to update an Order ?

To modify a specific Order you need to setup it's "id".

Here is an example :

# ORDER SETUP
order = Order(
    id=YOUR_ORDER_ID
    action=Order.Action.BUY,
    order_type=Order.OrderType.LIMIT,
    price=10.60,
    product_id=71981,
    size=1,
    time_type=Order.TimeType.GOOD_TILL_DAY,
)

# UPDATE ORDER
succcess = trading_api.update_order(order=order)

4.3. How to delete an Order ?

To delete a specific Order you just need it's "id".

Here is an example :

# DELETE ORDER
succcess = trading_api.delete_order(order_id=YOUR_ORDER_ID)

5. Portfolio

5.1. How to retrieve pending Orders ?

This is how to get the list of Orders currently created but not yet executed or deleted :

request_list = Update.RequestList()
request_list.values.extend([
    Update.Request(option=Update.Option.ORDERS, last_updated=0),
])

update = trading_api.get_update(request_list=request_list)
update_dict = pb_handler.message_to_dict(message=update)
orders_df = pd.DataFrame(update_dict['orders']['values'])

Example : Orders

   product_id      time_type  price  size                                    id  ...  action  order_type stop_price retained_order  sent_to_exchange
0           0  GOOD_TILL_DAY      2     3  202cb962-ac59-075b-964b-07152d234b70  ...     BUY       LIMIT         16             17                18

For a more comprehensive example : update.py

5.2. How to get the Portfolio ?

This is how to list the stocks/products currently in the portfolio :

request_list = Update.RequestList()
request_list.values.extend([
    Update.Request(option=Update.Option.PORTFOLIO, last_updated=0),
])

update = trading_api.get_update(request_list=request_list)
update_dict = pb_handler.message_to_dict(message=update)
portfolio_df = pd.DataFrame(update_dict['portfolio']['values'])

For a more comprehensive example : update.py

5.3. How to get the TotalPortfolio ?

This is how to get aggregated data about the portfolio :

request_list = Update.RequestList()
request_list.values.extend([
    Update.Request(option=Update.Option.TOTALPORTFOLIO, last_updated=0),
])

update = trading_api.get_update(request_list=request_list)
update_dict = pb_handler.message_to_dict(message=update)
total_portfolio_df = pd.DataFrame(update_dict['total_portfolio']['values'])

Example : DataFrame

   degiroCash  flatexCash  totalCash  totalDepositWithdrawal  todayDepositWithdrawal  ...  reportNetliq  reportOverallMargin  reportTotalLongVal  reportDeficit  marginCallStatus
0           0           1          2                       3                       4  ...            16                   17                  18             19    NO_MARGIN_CALL

For a more comprehensive example : update.py

5.4. How to retrieve the OrdersHistory ?

This method returns data about passed orders between two dates.

The result contains a list of "Orders" objects with the following attributes :

Parameter Type Description
created str RFC 3339 Datetime, example : "2020-10-06T20:07:18+02:00".
orderId str MD5 HASH, example : "098f6bcd-4621-d373-cade-4e832627b4f6"
productId int Id of the product example : 65156
size float Size of the order, example : 10.0000
price float Price of the order, example : 8.6800
buysell str "B" or "S"
orderTypeId int see 3.Order
orderTimeTypeId int see 3.Order
stopPrice float Price like : 0.0000
totalTradedSize int -
type str "CREATE", "DELETE" or "MODIFY"
status str "CONFIRMED"
last str RFC 3339 Datetime, example : "2020-10-06T20:07:18+02:00".
isActive bool -

Here is how to get this data :

# SETUP REQUEST
from_date = OrdersHistory.Request.Date(year=2020,month=11,day=15)
to_date = OrdersHistory.Request.Date(year=2020,month=10,day=15)
request = OrdersHistory.Request(from_date=from_date, to_date=to_date)

# FETCH DATA
orders_history = trading_api.get_orders_history(request=request)

For a more comprehensive example : orders_history.py

5.5. How to retrieve the TransactionsHistory ?

Here is how to get this data :

# SETUP REQUEST
from_date = TransactionsHistory.Request.Date(year=2020,month=11,day=15)
to_date = TransactionsHistory.Request.Date(year=2020,month=10,day=15)
request = TransactionsHistory.Request(from_date=from_date, to_date=to_date)

# FETCH DATA
transactions_history = trading_api.get_transactions_history(request=request)

For a more comprehensive example : transactions_history.py

6. Account

6.1. How to retrieve the table : Config ?

The config table contains the following informations :

Parameter Type Description
sessionId str Current session id.
clientId int Unique Degiro's Account identifier also called "userToken"
tradingUrl str -
paUrl str -
reportingUrl str -
paymentServiceUrl str -
productSearchUrl str -
dictionaryUrl str -
productTypesUrl str -
companiesServiceUrl str -
i18nUrl str -
vwdQuotecastServiceUrl str -
vwdNewsUrl str -
vwdGossipsUrl str -
taskManagerUrl str -
refinitivNewsUrl str -
refinitivAgendaUrl str -
refinitivCompanyProfileUrl str -
refinitivCompanyRatiosUrl str -
refinitivFinancialStatementsUrl str -
refinitivClipsUrl str -
landingPath str -
betaLandingPath str -
mobileLandingPath str -
loginUrl str -

Here is how to get this table :

# FETCH DATA
config_table = trading_api.get_config()

# EXTRACT SOME DATA
user_token = config_table['clientId']
session_id = config_table['sessionId']

For a more comprehensive example : config_table.py

6.2. How to retrieve the table : ClientDetails ?

The ClientDetails table contains information about the current Degiro Account.

Parameter Type
id int
intAccount int
loggedInPersonId int
clientRole str
effectiveClientRole str
contractType str
username str
displayName str
email str
firstContact.firstName str
firstContact.lastName str
firstContact.displayName str
firstContact.nationality str
firstContact.gender str
firstContact.dateOfBirth str
firstContact.placeOfBirth str
firstContact.countryOfBirth str
address.streetAddress str
address.streetAddressNumber str
address.zip str
address.city str
address.country str
cellphoneNumber str
locale str
language str
culture str
bankAccount.bankAccountId int
bankAccount.bic str
bankAccount.iban str
bankAccount.status str
flatexBankAccount.bic str
flatexBankAccount.iban str
memberCode str
isWithdrawalAvailable bool
isAllocationAvailable bool
isIskClient bool
isCollectivePortfolio bool
isAmClientActive bool
canUpgrade bool

Here is how to get this table :

# FETCH DATA
client_details_table = trading_api.get_client_details()

# EXTRACT SOME DATA
int_account = client_details_table['data']['intAccount']
user_token = client_details_table['data']['id']

For a more comprehensive example : client_details_table.py

6.3. How to retrieve the table : AccountInfo ?

The AccountInfo table contains the following information about currencies.

Parameter Type
clientId int
baseCurrency str
currencyPairs dict
marginType str
cashFunds dict
compensationCapping float

Here is how to get this table :

account_info_table = trading_api.get_account_info()

For a more comprehensive example : account_info_table.py

6.4. How to get the table : AccountOverview ?

It contains information about cash movements.

Here is how to get this data :

# SETUP REQUEST
from_date = AccountOverview.Request.Date(year=2020,month=11,day=15)
to_date = AccountOverview.Request.Date(year=2020,month=10,day=15)
request = AccountOverview.Request(from_date=from_date, to_date=to_date)

# FETCH DATA
account_overview = trading_api.get_account_overview(request=request)

For a more comprehensive example : account_overview.py

7. Products

7.1. How to get the table : ProductsConfig ?

This table contains useful parameters to filter products.

Here are the parameters which are inside this table :

Parameter Type
stockCountries list
bondExchanges list
bondIssuerTypes list
eurexCountries list
futureExchanges list
optionExchanges list
combinationExchanges list
cfdExchanges list
exchanges list
indices list
regions list
countries list
productTypes list
etfFeeTypes list
investmentFundFeeTypes list
optionAggregateTypes list
leveragedAggregateTypes list
etfAggregateTypes list
investmentFundAggregateTypes list
lookupSortColumns list
stockSortColumns list
bondSortColumns list
cfdSortColumns list
etfSortColumns list
futureSortColumns list

Here is how to get this data :

# FETCH DATA
products_config = trading_api.get_products_config()

For a more comprehensive example : products_config.py

7.2. How to get my favourite products ?

Here is how to get this data :

# FETCH DATA
favourites_list = trading_api.get_favourites_list()

For a more comprehensive example : favourites_list.py

7.3. How to lookup products (search by name) ?

Text research on a financial product.

Here is how to get this data :

# SETUP REQUEST
request = ProductSearch.RequestLookup(
    search_text='APPLE',
    limit=10,
    offset=0,
)

# FETCH DATA
products_lookup = trading_api.product_search(request=request)

For a more comprehensive example : product_lookup.py

7.4. How to search bonds ?

Here is how to get this data :

# SETUP REQUEST
request = ProductSearch.RequestBonds(
    bondIssuerTypeId=0,
    bondExchangeId=710,

    searchText='',
    offset=0,
    limit=100,
    requireTotal=True,
    sortColumns='name',
    sortTypes='asc',
)

# FETCH DATA
bond_list = trading_api.product_search(request=request)

For a more comprehensive example : product_search.py

7.5. How to search etfs ?

Here is how to get this data :

# SETUP REQUEST
request = ProductSearch.RequestETFs(
    popularOnly=False,
    inputAggregateTypes='',
    inputAggregateValues='',

    searchText='',
    offset=0,
    limit=100,
    requireTotal=True,
    sortColumns='name',
    sortTypes='asc',
)

# FETCH DATA
etf_list = trading_api.product_search(request=request)

For a more comprehensive example : product_search.py

7.6. How to search funds ?

Here is how to get this data :

# SETUP REQUEST
request = ProductSearch.RequestFunds(
    searchText='',
    offset=0,
    limit=100,
    requireTotal=True,
    sortColumns='name',
    sortTypes='asc',
)

# FETCH DATA
fund_list = trading_api.product_search(request=request)

For a more comprehensive example : product_search.py

7.7. How to search futures ?

Here is how to get this data :

# SETUP REQUEST
request = ProductSearch.RequestFutures(
    futureExchangeId=1,
    underlyingIsin='FR0003500008',

    searchText='',
    offset=0,
    limit=100,
    requireTotal=True,
    sortColumns='name',
    sortTypes='asc',
)

# FETCH DATA
fund_list = trading_api.product_search(request=request)

For a more comprehensive example : product_search.py

7.8. How to search leverageds ?

Here is how to get this data :

# SETUP REQUEST
request = ProductSearch.RequestLeverageds(
    popularOnly=False,
    inputAggregateTypes='',
    inputAggregateValues='',

    searchText='',
    offset=0,
    limit=100,
    requireTotal=True,
    sortColumns='name',
    sortTypes='asc',
)

# FETCH DATA
etf_list = trading_api.product_search(request=request)

For a more comprehensive example : product_search.py

7.9. How to search options ?

Here is how to get this data :

# SETUP REQUEST
request = ProductSearch.RequestOptions(
    inputAggregateTypes='',
    inputAggregateValues='',
    optionExchangeId=3,
    underlyingIsin='FR0003500008',

    searchText='',
    offset=0,
    limit=100,
    requireTotal=True,
    sortColumns='expirationDate,strike',
    sortTypes='asc,asc',
)

# FETCH DATA
option_list = trading_api.product_search(request=request)

For a more comprehensive example : product_search.py

7.10. How to search stocks ?

It contains information about available stocks.

Here is how to get this data :

# SETUP REQUEST
request = ProductSearch.RequestStocks(
    indexId=5,
    isInUSGreenList=False,
    stockCountryId=886,

    searchText='',
    offset=0,
    limit=100,
    requireTotal=True,
    sortColumns='name',
    sortTypes='asc',
)

# FETCH DATA
stock_list = trading_api.product_search(request=request)

For a more comprehensive example : product_search.py

7.11. How to search warrants ?

Here is how to get this data :

# SETUP REQUEST
request = ProductSearch.RequestWarrants(
    searchText='',
    offset=0,
    limit=100,
    requireTotal=True,
    sortColumns='name',
    sortTypes='asc',
)

# FETCH DATA
warrant_list = trading_api.product_search(request=request)

For a more comprehensive example : product_search.py

7.12. How to search products from ids ?

Here is how to get this data :

# SETUP REQUEST
request = ProductsInfo.Request()
request.products.extend([96008, 1153605, 5462588])

# FETCH DATA
products_info = trading_api.get_products_info(
    request=request,
    raw=True,
)

For a more comprehensive example : products_info.py

8. Companies

8.1. How to get : CompanyProfile ?

Here is how to get this data :

# FETCH DATA
company_profile = trading_api.get_company_profile(
    product_isin='FR0000131906',
)

For a more comprehensive example : company_profile.py

8.2. How to get : CompanyRatios ?

This table contains information about the company.

Here are the parameters which are inside this table :

Parameter Type
totalFloat str
sharesOut str
consRecommendationTrend dict
forecastData dict
currentRatios dict

Here is how to get this data :

# FETCH DATA
company_ratios = trading_api.get_company_ratios(
    product_isin='FR0000131906',
)

For a more comprehensive example : company_ratios.py

8.3. How to get : FinancialStatements ?

Here is how to get this data :

# FETCH DATA
financials_statements = trading_api.get_financials_statements(
    product_isin='FR0000131906',
)

For a more comprehensive example : financial_statements.py

8.4. How to get : LatestNews ?

Here is how to get this data :

# SETUP REQUEST
request = LatestNews.Request(
    offset=0,
    languages='en,fr',
    limit=20,
)

# FETCH DATA
latest_news = trading_api.get_latest_news(
    request=request,
    raw=True,
)

For a more comprehensive example : latest_news.py

8.5. How to get : TopNewsPreview ?

Here is how to get this data :

# FETCH DATA
top_news_preview = trading_api.get_top_news_preview(raw=True)

For a more comprehensive example : top_news_preview.py

8.6. How to get : NewsByCompany ?

Here is how to get this data :

# SETUP REQUEST
request = NewsByCompany.Request(
    isin='NL0000235190',
    limit=10,
    offset=0,
    languages='en,fr',
)

# FETCH DATA
news_by_company = trading_api.get_news_by_company(
    request=request,
    raw=True,
)

For a more comprehensive example : news_by_company.py

9. Contributing

Pull requests are welcome.

Feel free to open an issue or send me a message if you have a question.

10. License

BSD-3-Clause License

About

This is yet another library to access Degiro's API.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%