Skip to content

Outline of the project

jokteur edited this page Oct 12, 2020 · 1 revision

This page lists the features that have been implemented and features that still need implementation.

Outline of the BM-Segmenter

Projects

Functionnalities

  • create / import project
  • pack data into a single working directory

Properties of project

  • name
  • description
  • working directory
  • datasets
  • models

Datasets

Functionnalities

  • Create dataset
  • Import dataset from another project
  • Merge datasets
  • Split datasets
  • Pre-process data

Preprocessing of data

  • anonymize dataset : case number, dicom data
  • import dicom from folder and specify structure
  • import images from folder and specify structure
  • apply crop / rotation / resizing on whole dataset
  • apply crop from existing model
  • apply smart crop : border detection
  • filter out

Properties of datasets

  • name
  • description
  • original anonymized data (non pre-processed)
  • pre-processed data

Segmentation and correction of images

Multiple segmentations can be applied on one dataset

Segmentation properties

  • name
  • description
  • ML model
  • type of segmentation

Segmentation tools

  • resizable circular brush
  • lasso select tool
  • box select tool
  • edge detect brush
  • undo / redo
  • apply filter on tool (values in HU units, values in RGB)
  • apply segmentation from existing model (can be automatic)

Validation tools

  • Defines multiple profiles
  • Validation levels: modified, partially validated, fully validated

Machine-learning models

Create models

  • Image segmentation of image bounding
  • Pre-built model
  • U-Net model creation : number of layers, input size, output size

Import models

  • Import external model, pre-trained or not

Train models

  • Apply on selection of datasets : select level of validation
  • Automatic train / test creation
  • Data augmentation parameters (shear, crop, resize, rotation)
  • Train on raw data or png data (with selection of CT kernel)
  • Train with GPU and test memory capacity
  • Train with existing weights or retrain from scratch

Measurements and export of data

  • Measure area (in m^2, or number of pixels)
  • Measure mean value, std deviation
  • Histogram of values in mask
  • Export csv and select which measurements