EvaluationMaster is a tool focused on chemical data processing and simulation, designed to assist researchers and developers in efficiently screening and evaluating compounds.
- Data Processing: Supports multiple data formats, providing powerful data processing capabilities.
- Bacth Docking and Evaluation: Integrates different docking tools to perform complex batch docking evaluation under multiple protein structures.
- User Interface: Offers a PyQt-based graphical user interface, easy to operate and visualize data.
A comprehensive tutorial for EvaluationMaster is available here. This tutorial provides step-by-step guidance on using the tool, covering all use cases and offering helpful instructions for beginners.
We have fix the decoy generation error
We have fix the Redock_GUI error
We have fixed some errors and constructed an Install file for easier installation.
We discovered that Karmadock's code had been updated since our initial tests, particularly regarding execution scripts. To ensure smooth execution for the user. It is necessary to replace a script in the substitude folder with one in the same path as karmadock.
You can just run ./Install to complete installation or you can follow the steps:
eval "$(conda shell.bash hook)"
conda create -n VM python=3.9 -y
conda activate VM
While the virtual environment is activated, execute the following commands to install the required dependencies:
conda install pyqt -y
wget https://files.pythonhosted.org/packages/b6/06/291866f91c573cc637bedbdd008e6a8ca506b589e61de1540ca265cfe7bd/PyQt_Fluent_Widgets-1.6.5-py3-none-any.whl
pip install PyQt_Fluent_Widgets-1.6.5-py3-none-any.whl
pip install qdarkstyle
conda install numpy -c conda-forge -y
conda install vina -c conda-forge -y
conda install rdkit -c conda-forge -y
conda install chembl_webresource_client matplotlib -c conda-forge -y
conda install pyarrow -c conda-forge -y
conda install openpyxl -c conda-forge -y
conda install scipy -c conda-forge -y
conda install scikit-learn==1.3.2 -c conda-forge -y
conda install openbabel -c conda-forge -y
conda install pandas -c conda-forge -y
conda install prody -c conda-forge -y
conda install wandb -c conda-forge -y
conda install scikit-image -c conda-forge -y
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia -y
pip install molgrid
pip install tqdm
pip install seaborn
sudo apt install autogrid
conda install -c conda-forge pymol-open-source -y
mkdir -p Support_software
cd Support_software
mkdir -p mgltools
cd mgltools
wget https://ccsb.scripps.edu/mgltools/download/491/ -O mgltools_x86_64Linux2_1.5.7p1.tar.gz
tar -zxvf mgltools_x86_64Linux2_1.5.7p1.tar.gz
cd mgltools_x86_64Linux2_1.5.7
bash install.sh
cd ../..
mkdir -p Ledock
cd Ledock
wget http://www.lephar.com/download/ledock_linux_x86
wget https://www.lephar.com/download/dok2mol2.cpp
g++ -std=c++11 dok2mol2.cpp -o dok2mol2
mv ledock_linux_x86 ledock
chmod 777 ledock
cd ..
git clone https://github.com/schrojunzhang/KarmaDock
cd KarmaDock
mkdir -p Env
cd Env
wget https://zenodo.org/record/7788732/files/karmadock_env.tar.gz?download=1 -O karmadock_env.tar.gz
tar -zxvf karmadock_env.tar.gz
cd ../..
git clone https://github.com/ccsb-scripps/AutoDock-GPU
cd AutoDock-GPU
export GPU_INCLUDE_PATH=/usr/local/cuda/include
export GPU_LIBRARY_PATH=/usr/local/cuda/lib64
make DEVICE=OCLGPU NUMWI=64
cd ..
git clone https://github.com/Discngine/fpocket.git
cd fpocket
make
sudo make install
cd ..
git clone https://github.com/devalab/DeepPocket.git
cd DeepPocket
wget https://zenodo.org/records/13833813/files/first_model_fold1_best_test_auc_85001.pth.tar
wget https://zenodo.org/records/13833813/files/seg0_best_test_IOU_91.pth.tar
cd ..
git clone https://github.com/fimrie/DeepCoy.git
cd DeepCoy
wget https://zenodo.org/records/13831241/files/Deep_Coy_env.tar.gz
tar -zxvf Deep_Coy_env.tar.gz
cd ..
wget https://opig.stats.ox.ac.uk/data/downloads/DeepCoy_pretrained_models.tar.gz
tar -zxvf DeepCoy_pretrained_models.tar.gz
cd ..
bash
echo "export EVALUATIONMASTER=$(pwd)" >> ~/.bashrc
source ~/.bashrc
cp $EVALUATIONMASTER/Substitude/KarmaDock/dataset/graph_obj.py $EVALUATIONMASTER/Support_software/KarmaDock/dataset/graph_obj.py
After completing the above steps, the installation process is finished. You can now use the installed software.