Skip to content

Commit

Permalink
Add new post and adjust image path
Browse files Browse the repository at this point in the history
  • Loading branch information
jacksonwuu committed Feb 8, 2024
1 parent a50c678 commit 4738996
Show file tree
Hide file tree
Showing 28 changed files with 40 additions and 23 deletions.
2 changes: 1 addition & 1 deletion _config.yml
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ external_link:
exclude: ''
filename_case: 0
render_drafts: false
post_asset_folder: false
post_asset_folder: true
relative_link: false
future: true
syntax_highlighter: highlight.js
Expand Down
11 changes: 11 additions & 0 deletions package-lock.json

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

1 change: 1 addition & 0 deletions package.json
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
"hexo-generator-feed": "^3.0.0",
"hexo-generator-index": "^3.0.0",
"hexo-generator-tag": "^2.0.0",
"hexo-image-link": "^0.0.5",
"hexo-renderer-ejs": "^2.0.0",
"hexo-renderer-marked": "^6.0.0",
"hexo-renderer-stylus": "^3.0.0",
Expand Down
42 changes: 21 additions & 21 deletions source/_posts/2023-04-deep-learning-notes.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,9 +28,9 @@ PPMI 矩阵是对共现矩阵的一种改进。但 PPMI 矩阵还是存在一个

降维的方法有很多,这本书上用到的是奇异值分解(Singular Value Decomposition,SVD)。 这一块是线性代数的知识,可以去看看 3b1b 的线性代数教程,通过可视化的方式更好地理解线性代数。

![](/images/2023-04-deep-learning-notes/%E4%B8%8A%E4%BD%8D%E4%B8%8B%E4%BD%8D%E5%85%B3%E7%B3%BB%E5%9B%BE.png)
![](2023-04-deep-learning-notes/%E4%B8%8A%E4%BD%8D%E4%B8%8B%E4%BD%8D%E5%85%B3%E7%B3%BB%E5%9B%BE.png)

![](/images/2023-04-deep-learning-notes/%E9%99%8D%E7%BB%B4%E7%A4%BA%E6%84%8F%E5%9B%BE.png)
![](2023-04-deep-learning-notes/%E9%99%8D%E7%BB%B4%E7%A4%BA%E6%84%8F%E5%9B%BE.png)

## 第三四章

Expand All @@ -40,9 +40,9 @@ PPMI 矩阵是对共现矩阵的一种改进。但 PPMI 矩阵还是存在一个

这一章主要讲了 word2vec 与其 CBOW 模型。

![](/images/2023-04-deep-learning-notes/CBOW%E6%A8%A1%E5%9E%8B.png)
![](2023-04-deep-learning-notes/CBOW%E6%A8%A1%E5%9E%8B.png)

![](/images/2023-04-deep-learning-notes/%E5%BE%AE%E7%8E%87%E5%88%86%E5%B8%83.png)
![](2023-04-deep-learning-notes/%E5%BE%AE%E7%8E%87%E5%88%86%E5%B8%83.png)

## 第四章

Expand All @@ -58,11 +58,11 @@ PPMI 矩阵是对共现矩阵的一种改进。但 PPMI 矩阵还是存在一个

这一章剩下的部分基本上都在讲高数(微分、导数、偏导、梯度),下一次打卡再总结。

![](/images/2023-04-deep-learning-notes/Input-Data.webp)
![](2023-04-deep-learning-notes/Input-Data.webp)

![](/images/2023-04-deep-learning-notes/NIPTHOG9.png)
![](2023-04-deep-learning-notes/NIPTHOG9.png)

![](/images/2023-04-deep-learning-notes/Upperloop.png)
![](2023-04-deep-learning-notes/Upperloop.png)

## 第五章

Expand All @@ -85,11 +85,11 @@ PPMI 矩阵是对共现矩阵的一种改进。但 PPMI 矩阵还是存在一个

理解了反向传播算法后,整个实现也是非常容易理解的。

![](/images/2023-04-deep-learning-notes/Backprspaoation.png)
![](2023-04-deep-learning-notes/Backprspaoation.png)

![](/images/2023-04-deep-learning-notes/%E5%8F%8D%E5%90%91%E4%BC%A0%E6%92%AD.png)
![](2023-04-deep-learning-notes/%E5%8F%8D%E5%90%91%E4%BC%A0%E6%92%AD.png)

![](/images/2023-04-deep-learning-notes/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E5%85%A8%E8%B2%8C%E5%9B%BE.png)
![](2023-04-deep-learning-notes/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E5%85%A8%E8%B2%8C%E5%9B%BE.png)

## 第六章

Expand Down Expand Up @@ -119,11 +119,11 @@ SGD 的缺点是如果函数的形状非均向(anisotropic),比如呈延伸状

这一章后面的内容等到下次打卡。

![](/images/2023-04-deep-learning-notes/%E6%96%B9%E6%B3%95%E6%AF%94%E8%BE%83.png)
![](2023-04-deep-learning-notes/%E6%96%B9%E6%B3%95%E6%AF%94%E8%BE%83.png)

![](/images/2023-04-deep-learning-notes/MNIST.png)
![](2023-04-deep-learning-notes/MNIST.png)

![](/images/2023-04-deep-learning-notes/Algorithms.png)
![](2023-04-deep-learning-notes/Algorithms.png)

## 继续打卡第六章

Expand All @@ -145,9 +145,9 @@ Dropout 是一种在学习的过程中随机删除神经元的方法。训练时

这一章有很多内容还不够理解,值得后续再研究一番。

![](/images/2023-04-deep-learning-notes/Without.webp)
![](2023-04-deep-learning-notes/Without.webp)

![](/images/2023-04-deep-learning-notes/%E8%B6%85%E5%8F%82%E6%95%B0%E4%BC%98%E5%8C%96.png)
![](2023-04-deep-learning-notes/%E8%B6%85%E5%8F%82%E6%95%B0%E4%BC%98%E5%8C%96.png)

## 打卡第七章——卷积神经网络(CNN)!!!

Expand All @@ -167,14 +167,14 @@ CNN 中有时将卷积层的输入输出数据称为特征图(feature map)。

具有代表性的 CNN 有 LeNet 和 AlexNet。LeNet 和 AlexNet 没有太大的不同。但围绕它们的环境和计算机技术有了很大的进步。具体地说,现在任何人都可以获得大量的数据。而且,擅长大规模并行计算的 GPU 得到普及,高速进行大量的运算已经成为可能。大数据和 GPU 已成为深度学习发展的巨大的原动力!

![](/images/2023-04-deep-learning-notes/CNN.png)
![](2023-04-deep-learning-notes/CNN.png)

![](/images/2023-04-deep-learning-notes/RGB.png)
![](2023-04-deep-learning-notes/RGB.png)

![](/images/2023-04-deep-learning-notes/%E5%8D%B7%E7%A7%AF%E8%BF%90%E7%AE%97.png)
![](2023-04-deep-learning-notes/%E5%8D%B7%E7%A7%AF%E8%BF%90%E7%AE%97.png)

![](/images/2023-04-deep-learning-notes/url.jpg)
![](2023-04-deep-learning-notes/url.jpg)

![](/images/2023-04-deep-learning-notes/7-26.png)
![](2023-04-deep-learning-notes/7-26.png)

![](/images/2023-04-deep-learning-notes/Feature-map.webp)
![](2023-04-deep-learning-notes/Feature-map.webp)
2 changes: 1 addition & 1 deletion source/_posts/2024-02-kbuild.md
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ Linux kernel 正是有了 kbuild 这样强大的构建系统,它才能很灵

执行这个命令之后,它会在命令行中出现一个配置界面,通过这个配置界面,用户可以勾选各种配置参数,然后点击保存,它就会生成`.config`这个文件,这个文件就是编译整个内核的配置文件。

![](2024-02-08-11-04-32.png)
![](2024-02-kbuild/2024-02-08-11-04-32.png)

执行`make menuconfig` 会触发根目录下的`Makefile`里的`%config` 这个 target:

Expand Down
File renamed without changes
5 changes: 5 additions & 0 deletions yarn.lock
Original file line number Diff line number Diff line change
Expand Up @@ -648,6 +648,11 @@
dependencies:
"sprintf-js" "^1.1.2"

"hexo-image-link@^0.0.5":
"integrity" "sha512-IakmAA0lPATF6iUfHAzYSuZPA6DYLlMj4LTGnT4LeEtmIHjPWsTDgGssPbMJakA47M1vNv5WwiNS3GCtdH2FQw=="
"resolved" "https://registry.npmjs.org/hexo-image-link/-/hexo-image-link-0.0.5.tgz"
"version" "0.0.5"

"hexo-log@^4.0.1":
"integrity" "sha512-i2Sgxk8Cgx5viSjq5qW5N/rBFfwoCKQcH8qnnW1fawCapcdEAhIsq+Y3vbrs9bssyDlyU6Vqm4oQmosREaNI7Q=="
"resolved" "https://registry.npmjs.org/hexo-log/-/hexo-log-4.1.0.tgz"
Expand Down

0 comments on commit 4738996

Please sign in to comment.