Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

document memory recommendations #125

Merged
merged 1 commit into from
Nov 17, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions docs/getting-started/first-abn.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ This tutorial describes how to do A/B testing of a backend component using the [
***

???+ warning "Before you begin"
1. Ensure that you have a Kubernetes cluster and the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs. You can create a local Kubernetes cluster using tools like [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/).
1. Ensure that you have a Kubernetes cluster and the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs. If using a local cluster (for example, [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/)), we recommend providing the cluster with at least 16GB of memory.
2. Have Grafana available. For example, Grafana can be installed on your cluster as follows:
```shell
kubectl create deploy grafana --image=grafana/grafana
Expand Down Expand Up @@ -111,7 +111,7 @@ Inspect the metrics using Grafana. If Grafana is deployed to your cluster, port-
kubectl port-forward service/grafana 3000:3000
```

Open Grafana in a browser by going to [http://localhost:3000](http://localhost:3000)
Open Grafana in a browser by going to [http://localhost:3000](http://localhost:3000) and login. The default username/password are `admin`/`admin`.

[Add a JSON API data source](http://localhost:3000/connections/datasources/marcusolsson-json-datasource) `default/backend` with the following parameters:

Expand Down
4 changes: 2 additions & 2 deletions docs/getting-started/first-performance.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ Run your first performance test by load testing a Kubernetes HTTP service and vi
![Load test HTTP](images/kubernetesusage.png)

???+ warning "Before you begin"
1. Ensure that you have a Kubernetes cluster and the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs. You can create a local Kubernetes cluster using tools like [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/).
1. Ensure that you have a Kubernetes cluster and the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs. If using a local cluster (for example, [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/)), we recommend providing the cluster with at least 16GB of memory.
2. Deploy the sample HTTP service in the Kubernetes cluster.
```shell
kubectl create deploy httpbin --image=kennethreitz/httpbin --port=80
Expand Down Expand Up @@ -66,7 +66,7 @@ Inspect the metrics using Grafana. If Grafana is deployed to your cluster, port-
kubectl port-forward service/grafana 3000:3000
```

Open Grafana by going to [http://localhost:3000](http://localhost:3000).
Open Grafana in a browser by going to [http://localhost:3000](http://localhost:3000) and login. The default username/password are `admin`/`admin`.

[Add a JSON API data source](http://localhost:3000/connections/datasources/marcusolsson-json-datasource) `httpbin-test` with the following parameters:

Expand Down
2 changes: 1 addition & 1 deletion docs/getting-started/first-release.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ The chart provides the configuration needed for Iter8 to automatically deploy ap
![Blue-green rollout](../tutorials/images/blue-green.png)

???+ warning "Before you begin"
1. Ensure that you have a Kubernetes cluster and the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs. You can create a local Kubernetes cluster using tools like [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/).
1. Ensure that you have a Kubernetes cluster and the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs. If using a local cluster (for example, [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/)), we recommend providing the cluster with at least 16GB of memory.
2. Install [Istio](https://istio.io). It suffices to install the [demo profile](https://istio.io/latest/docs/setup/getting-started/), for example by using:
```shell
istioctl install --set profile=demo -y
Expand Down
11 changes: 4 additions & 7 deletions docs/tutorials/integrations/kserve-mm/abn.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,11 +11,8 @@ This tutorial describes how to do A/B testing as part of the release of a backen
***

???+ warning "Before you begin"
1. Ensure that you have a Kubernetes cluster and the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs. You can create a local Kubernetes cluster using tools like [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/).
2. Have access to a cluster running [KServe ModelMesh Serving](https://github.com/kserve/modelmesh-serving). For example, you can create a modelmesh-serving [Quickstart](https://github.com/kserve/modelmesh-serving/blob/release-0.11/docs/quickstart.md) environment. If using the Quickstart environment, change your default namespace to `modelmesh-serving`:
```shell
kubectl config set-context --current --namespace=modelmesh-serving
```
1. Ensure that you have the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs installed.
2. Have access to a cluster running [KServe ModelMesh Serving](https://github.com/kserve/modelmesh-serving). For example, you can create a modelmesh-serving [Quickstart](https://github.com/kserve/modelmesh-serving/blob/release-0.11/docs/quickstart.md) environment. If using the Quickstart environment, your default namespace will be changed to `modelmesh-serving`. If using a local cluster (for example, [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/)), we recommend providing the cluster with at least 16GB of memory.
3. Have Grafana available. For example, Grafana can be installed on your cluster as follows:
```shell
kubectl create deploy grafana --image=grafana/grafana
Expand Down Expand Up @@ -131,9 +128,9 @@ Inspect the metrics using Grafana. If Grafana is deployed to your cluster, port-
kubectl port-forward service/grafana 3000:3000
```

Open Grafana in a browser by going to [http://localhost:3000](http://localhost:3000)
Open Grafana in a browser by going to [http://localhost:3000](http://localhost:3000) and login. The default username/password are `admin`/`admin`.

[Add a JSON API data source](http://localhost:3000/connections/datasources/marcusolsson-json-datasource) `default/backend` with the following parameters:
[Add a JSON API data source](http://localhost:3000/connections/datasources/marcusolsson-json-datasource) `modelmesh-serving/backend` with the following parameters:

* URL: `http://iter8.modelmesh-serving:8080/abnDashboard`
* Query string: `namespace=modelmesh-serving&application=backend`
Expand Down
7 changes: 2 additions & 5 deletions docs/tutorials/integrations/kserve-mm/blue-green.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,11 +14,8 @@ The chart provides the configuration needed for Iter8 to automatically deploy ap
![Blue-green rollout](../../images/blue-green.png)

???+ warning "Before you begin"
1. Ensure that you have the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs.
2. Have access to a cluster running [KServe ModelMesh Serving](https://github.com/kserve/modelmesh-serving). For example, you can create a modelmesh-serving [Quickstart](https://github.com/kserve/modelmesh-serving/blob/release-0.11/docs/quickstart.md) environment. If using the Quickstart environment, change your default namespace to `modelmesh-serving`:
```shell
kubectl config set-context --current --namespace=modelmesh-serving
```
1. Ensure that you have the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs installed.
2. Have access to a cluster running [KServe ModelMesh Serving](https://github.com/kserve/modelmesh-serving). For example, you can create a modelmesh-serving [Quickstart](https://github.com/kserve/modelmesh-serving/blob/release-0.11/docs/quickstart.md) environment. If using the Quickstart environment, your default namespace will be changed to `modelmesh-serving`. If using a local cluster (for example, [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/)), we recommend providing the cluster with at least 16GB of memory.
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
2. Have access to a cluster running [KServe ModelMesh Serving](https://github.com/kserve/modelmesh-serving). For example, you can create a modelmesh-serving [Quickstart](https://github.com/kserve/modelmesh-serving/blob/release-0.11/docs/quickstart.md) environment. If using the Quickstart environment, your default namespace will be changed to `modelmesh-serving`. If using a local cluster (for example, [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/)), we recommend providing the cluster with at least 16GB of memory.
2. Have access to a cluster running [KServe ModelMesh Serving](https://github.com/kserve/modelmesh-serving). For example, you can create a modelmesh-serving [Quickstart](https://github.com/kserve/modelmesh-serving/blob/release-0.11/docs/quickstart.md) environment. If using the Quickstart environment, your default namespace will be changed to `modelmesh-serving`. If using a local cluster (for example, [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/)), we recommend providing the cluster with at least 16GB of memory.

3. Install [Istio](https://istio.io). It suffices to install the [demo profile](https://istio.io/latest/docs/setup/getting-started/), for example by using:
```shell
istioctl install --set profile=demo -y
Expand Down
7 changes: 2 additions & 5 deletions docs/tutorials/integrations/kserve-mm/canary.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,11 +14,8 @@ The chart provides the configuration needed for Iter8 to automatically deploy ap
![Canary rollout](../../images/canary.png)

???+ warning "Before you begin"
1. Ensure that you have the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs.
2. Have access to a cluster running [KServe ModelMesh Serving](https://github.com/kserve/modelmesh-serving). For example, you can create a modelmesh-serving [Quickstart](https://github.com/kserve/modelmesh-serving/blob/release-0.11/docs/quickstart.md) environment. If using the Quickstart environment, change your default namespace to `modelmesh-serving`:
```shell
kubectl config set-context --current --namespace=modelmesh-serving
```
1. Ensure that you have the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs installed.
2. Have access to a cluster running [KServe ModelMesh Serving](https://github.com/kserve/modelmesh-serving). For example, you can create a modelmesh-serving [Quickstart](https://github.com/kserve/modelmesh-serving/blob/release-0.11/docs/quickstart.md) environment. If using the Quickstart environment, your default namespace will be changed to `modelmesh-serving`. If using a local cluster (for example, [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/)), we recommend providing the cluster with at least 16GB of memory.
3. Install [Istio](https://istio.io). It suffices to install the [demo profile](https://istio.io/latest/docs/setup/getting-started/), for example by using:
```shell
istioctl install --set profile=demo -y
Expand Down
5 changes: 3 additions & 2 deletions docs/tutorials/integrations/kserve/abn-grpc.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,11 +11,12 @@ This tutorial describes how to do A/B testing as part of the release of a backen
***

???+ warning "Before you begin"
1. Ensure that you have a Kubernetes cluster and the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs. You can create a local Kubernetes cluster using tools like [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/).
1. Ensure that you have the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs installed.
2. Have access to a cluster running [KServe](https://kserve.github.io/website). You can create a [KServe Quickstart](https://kserve.github.io/website/0.11/get_started/#before-you-begin) environment as follows:
```shell
curl -s "https://raw.githubusercontent.com/kserve/kserve/release-0.11/hack/quick_install.sh" | bash
```
If using a local cluster (for example, [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/)), we recommend providing the cluster with at least 16GB of memory.
3. Have Grafana available. For example, Grafana can be installed on your cluster as follows:
```shell
kubectl create deploy grafana --image=grafana/grafana
Expand Down Expand Up @@ -139,7 +140,7 @@ Inspect the metrics using Grafana. If Grafana is deployed to your cluster, port-
kubectl port-forward service/grafana 3000:3000
```

Open Grafana in a browser by going to [http://localhost:3000](http://localhost:3000)
Open Grafana in a browser by going to [http://localhost:3000](http://localhost:3000) and login. The default username/password are `admin`/`admin`.

[Add a JSON API data source](http://localhost:3000/connections/datasources/marcusolsson-json-datasource) `default/backend` with the following parameters:

Expand Down
5 changes: 3 additions & 2 deletions docs/tutorials/integrations/kserve/abn-http.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,11 +11,12 @@ This tutorial describes how to do A/B testing as part of the release of a backen
***

???+ warning "Before you begin"
1. Ensure that you have a Kubernetes cluster and the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs. You can create a local Kubernetes cluster using tools like [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/).
1. Ensure that you have the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs installed.
2. Have access to a cluster running [KServe](https://kserve.github.io/website). You can create a [KServe Quickstart](https://kserve.github.io/website/0.11/get_started/#before-you-begin) environment as follows:
```shell
curl -s "https://raw.githubusercontent.com/kserve/kserve/release-0.11/hack/quick_install.sh" | bash
```
If using a local cluster (for example, [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/)), we recommend providing the cluster with at least 16GB of memory.
3. Have Grafana available. For example, Grafana can be installed on your cluster as follows:
```shell
kubectl create deploy grafana --image=grafana/grafana
Expand Down Expand Up @@ -131,7 +132,7 @@ Inspect the metrics using Grafana. If Grafana is deployed to your cluster, port-
kubectl port-forward service/grafana 3000:3000
```

Open Grafana in a browser by going to [http://localhost:3000](http://localhost:3000)
Open Grafana in a browser by going to [http://localhost:3000](http://localhost:3000) and login. The default username/password are `admin`/`admin`.

[Add a JSON API data source](http://localhost:3000/connections/datasources/marcusolsson-json-datasource) `default/backend` with the following parameters:

Expand Down
3 changes: 2 additions & 1 deletion docs/tutorials/integrations/kserve/blue-green.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,11 +14,12 @@ The chart provides the configuration needed for Iter8 to automatically deploy ap
![Blue-green rollout](../../images/blue-green.png)

???+ warning "Before you begin"
1. Ensure that you have the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs.
1. Ensure that you have the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs installed.
2. Have access to a cluster running [KServe](https://kserve.github.io/website). You can create a [KServe Quickstart](https://kserve.github.io/website/0.11/get_started/#before-you-begin) environment as follows:
```shell
curl -s "https://raw.githubusercontent.com/kserve/kserve/release-0.11/hack/quick_install.sh" | bash
```
If using a local cluster (for example, [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/)), we recommend providing the cluster with at least 16GB of memory.
<!-- Istio is installed as part of kserve install -->

## Install the Iter8 controller
Expand Down
3 changes: 2 additions & 1 deletion docs/tutorials/integrations/kserve/canary.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,11 +14,12 @@ The chart provides the configuration needed for Iter8 to automatically deploy ap
![Canary rollout](../../images/canary.png)

???+ warning "Before you begin"
1. Ensure that you have the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs.
1. Ensure that you have the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs installed.
2. Have access to a cluster running [KServe](https://kserve.github.io/website). You can create a [KServe Quickstart](https://kserve.github.io/website/0.11/get_started/#before-you-begin) environment as follows:
```shell
curl -s "https://raw.githubusercontent.com/kserve/kserve/release-0.11/hack/quick_install.sh" | bash
```
If using a local cluster (for example, [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/)), we recommend providing the cluster with at least 16GB of memory.
<!-- Istio is installed as part of kserve install -->

## Install the Iter8 controller
Expand Down
8 changes: 4 additions & 4 deletions docs/tutorials/integrations/kserve/grpc.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,12 +7,12 @@ template: main.html
This tutorial shows how easy it is to run a load test for KServe when using gRPC to make requests. We use a sklearn model to demonstrate. The same approach works for any model type.

???+ warning "Before you begin"
1. Try [Your first performance test](../../../getting-started/first-performance.md). Understand the main [concepts](../../../getting-started/concepts.md) behind Iter8.
2. Ensure that you have the [kubectl](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs.
3. Have access to a cluster running [KServe](https://kserve.github.io/website). You can create a [KServe Quickstart](https://kserve.github.io/website/0.11/get_started/#before-you-begin) environment as follows:
1. Ensure that you have the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs installed.
2. Have access to a cluster running [KServe](https://kserve.github.io/website). You can create a [KServe Quickstart](https://kserve.github.io/website/0.11/get_started/#before-you-begin) environment as follows:
```shell
curl -s "https://raw.githubusercontent.com/kserve/kserve/release-0.11/hack/quick_install.sh" | bash
```
If using a local cluster (for example, [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/)), we recommend providing the cluster with at least 16GB of memory.
4. Have Grafana available. For example, Grafana can be installed on your cluster as follows:
```shell
kubectl create deploy grafana --image=grafana/grafana
Expand Down Expand Up @@ -81,7 +81,7 @@ Inspect the metrics using Grafana. If Grafana is deployed to your cluster, port-
kubectl port-forward service/grafana 3000:3000
```

Open Grafana by going to [http://localhost:3000](http://localhost:3000).
Open Grafana in a browser by going to [http://localhost:3000](http://localhost:3000) and login. The default username/password are `admin`/`admin`.

[Add a JSON API data source](http://localhost:3000/connections/datasources/marcusolsson-json-datasource) `model-test` with the following parameters:

Expand Down
8 changes: 4 additions & 4 deletions docs/tutorials/integrations/kserve/http.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,12 +7,12 @@ template: main.html
This tutorial shows how easy it is to run a load test for KServe when using HTTP to make requests. We use a sklearn model to demonstrate. The same approach works for any model type.

???+ warning "Before you begin"
1. Try [Your first performance test](../../../getting-started/first-performance.md). Understand the main [concepts](../../../getting-started/concepts.md) behind Iter8.
2. Ensure that you have the [kubectl](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs.
3. Have access to a cluster running [KServe](https://kserve.github.io/website). You can create a [KServe Quickstart](https://kserve.github.io/website/0.11/get_started/#before-you-begin) environment as follows:
1. Ensure that you have the [`kubectl`](https://kubernetes.io/docs/reference/kubectl/) and [`helm`](https://helm.sh/) CLIs installed.
2. Have access to a cluster running [KServe](https://kserve.github.io/website). You can create a [KServe Quickstart](https://kserve.github.io/website/0.11/get_started/#before-you-begin) environment as follows:
```shell
curl -s "https://raw.githubusercontent.com/kserve/kserve/release-0.11/hack/quick_install.sh" | bash
```
If using a local cluster (for example, [Kind](https://kind.sigs.k8s.io/) or [Minikube](https://minikube.sigs.k8s.io/docs/)), we recommend providing the cluster with at least 16GB of memory.
4. Have Grafana available. For example, Grafana can be installed on your cluster as follows:
```shell
kubectl create deploy grafana --image=grafana/grafana
Expand Down Expand Up @@ -70,7 +70,7 @@ Inspect the metrics using Grafana. If Grafana is deployed to your cluster, port-
kubectl port-forward service/grafana 3000:3000
```

Open Grafana by going to [http://localhost:3000](http://localhost:3000).
Open Grafana in a browser by going to [http://localhost:3000](http://localhost:3000) and login. The default username/password are `admin`/`admin`.

[Add a JSON API data source](http://localhost:3000/connections/datasources/marcusolsson-json-datasource) `model-test` with the following parameters:

Expand Down
Loading