Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: more array dist #7

Merged
merged 2 commits into from
Dec 21, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 15 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,14 +7,28 @@ The plugin provides three namespaces:
- dist_str
- hamming
- levenshtein
- damerau_levenshtein
- indel
- jaro
- jaro_winkler
- lcs_seq
- osa
- postfix
- prefix
- dist_arr
- euclidean
- cosine
- chebyshev
- canberra
- bray_curtis
- manhatten
- minkowski
- l3_norm
- l4_norm
- dist_list (these act as set similary metrics)
- jaccard_index
- sorensen_index
- tversky_index
- overlap_coef
- cosine

Expand All @@ -37,7 +51,7 @@ df.select(
│ --- │
│ u32 │
╞══════╡
1
7
└──────┘


Expand Down
2 changes: 1 addition & 1 deletion polars_distance/polars_distance/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ name = "polars_distance"
crate-type = ["cdylib"]

[dependencies]
polars = { version = "*" , features = ["dtype-array", 'dtype-categorical']}
polars = { version = "*" , features = ["dtype-array", 'dtype-categorical', 'dtype-u16', 'dtype-u8', 'dtype-i8','dtype-i16']}
polars-core = {version = "*"}
polars-arrow = {version = "*"}
pyo3 = { version = "0.20", features = ["extension-module"] }
Expand Down
16 changes: 15 additions & 1 deletion polars_distance/polars_distance/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,14 +7,28 @@ The plugin provides three namespaces:
- dist_str
- hamming
- levenshtein
- damerau_levenshtein
- indel
- jaro
- jaro_winkler
- lcs_seq
- osa
- postfix
- prefix
- dist_arr
- euclidean
- cosine
- chebyshev
- canberra
- bray_curtis
- manhatten
- minkowski
- l3_norm
- l4_norm
- dist_list (these act as set similary metrics)
- jaccard_index
- sorensen_index
- tversky_index
- overlap_coef
- cosine

Expand All @@ -37,7 +51,7 @@ df.select(
│ --- │
│ u32 │
╞══════╡
1
7
└──────┘


Expand Down
51 changes: 50 additions & 1 deletion polars_distance/polars_distance/polars_distance/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,14 +49,63 @@ def canberra(self, other: IntoExpr) -> pl.Expr:
is_elementwise=True,
)

def bray_curtis(self, other: IntoExpr) -> pl.Expr:
"""Returns chebyshev distance between two vectors"""
return self._expr.register_plugin(
lib=lib,
args=[other],
symbol="bray_curtis_arr",
is_elementwise=True,
)

def manhatten(self, other: IntoExpr) -> pl.Expr:
"""Returns manhatten distance between two vectors"""
return self._expr.register_plugin(
lib=lib,
args=[other],
symbol="manhatten_arr",
is_elementwise=True,
)

def minkowski(self, other: IntoExpr, p: int) -> pl.Expr:
"""Returns minkowski distance between two vectors"""
return self._expr.register_plugin(
lib=lib,
args=[other],
kwargs={"p": p},
symbol="minkowski_arr",
is_elementwise=True,
)

def l3_norm(self, other: IntoExpr) -> pl.Expr:
"""Returns l3_norm distance between two vectors"""
return self._expr.register_plugin(
lib=lib,
args=[other],
symbol="l3_norm_arr",
is_elementwise=True,
)

def l4_norm(self, other: IntoExpr) -> pl.Expr:
"""Returns l4_norm distance between two vectors"""
return self._expr.register_plugin(
lib=lib,
args=[other],
symbol="l4_norm_arr",
is_elementwise=True,
)


@pl.api.register_expr_namespace("dist_str")
class DistancePairWiseString:
def __init__(self, expr: pl.Expr):
self._expr = expr

def hamming(self, other: IntoExpr, normalized: bool = False) -> pl.Expr:
"""Returns hamming distance between two expressions"""
"""Returns hamming distance between two expressions.

The length of the shortest string is padded to the length of longest string.
"""
if normalized:
return self._expr.register_plugin(
lib=lib,
Expand Down
119 changes: 108 additions & 11 deletions polars_distance/polars_distance/src/array.rs
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
use distances::vectors::minkowski;
use polars::prelude::arity::try_binary_elementwise;
use polars::prelude::*;
use polars_arrow::array::{Array, PrimitiveArray};
Expand All @@ -7,11 +8,20 @@ fn collect_into_vecf64(arr: Box<dyn Array>) -> Vec<f64> {
.downcast_ref::<PrimitiveArray<f64>>()
.unwrap()
.values_iter()
.map(|v| *v)
.copied()
.collect::<Vec<_>>()
}

pub fn distance_calc_float_inp(
fn collect_into_uint64(arr: Box<dyn Array>) -> Vec<u64> {
arr.as_any()
.downcast_ref::<PrimitiveArray<_>>()
.unwrap()
.values_iter()
.copied()
.collect::<Vec<_>>()
}

pub fn distance_calc_numeric_inp(
a: &ChunkedArray<FixedSizeListType>,
b: &ChunkedArray<FixedSizeListType>,
f: fn(&[f64], &[f64]) -> f64,
Expand All @@ -21,11 +31,17 @@ pub fn distance_calc_float_inp(
ComputeError: "inner data types don't match"
);
polars_ensure!(
a.inner_dtype().is_float(),
ComputeError: "inner data types must be float"
a.inner_dtype().is_numeric(),
ComputeError: "inner data types must be numeric"
);

try_binary_elementwise(a, b, |a: Option<Box<dyn Array>>, b| match (a, b) {
let s1 = a.cast(&DataType::Array(Box::new(DataType::Float64), a.width()))?;
let s2 = b.cast(&DataType::Array(Box::new(DataType::Float64), a.width()))?;

let a: &ArrayChunked = s1.array()?;
let b: &ArrayChunked = s2.array()?;

try_binary_elementwise(a, b, |a, b| match (a, b) {
(Some(a), Some(b)) => {
if a.null_count() > 0 || b.null_count() > 0 {
polars_bail!(ComputeError: "array cannot contain nulls")
Expand All @@ -39,6 +55,40 @@ pub fn distance_calc_float_inp(
})
}

pub fn distance_calc_uint_inp(
a: &ChunkedArray<FixedSizeListType>,
b: &ChunkedArray<FixedSizeListType>,
f: fn(&[u64], &[u64]) -> f64,
) -> PolarsResult<Float64Chunked> {
polars_ensure!(
a.inner_dtype() == b.inner_dtype(),
ComputeError: "inner data types don't match"
);
polars_ensure!(
a.inner_dtype().is_unsigned_integer(),
ComputeError: "inner data types must be unsigned integer"
);

let s1 = a.cast(&DataType::Array(Box::new(DataType::UInt64), a.width()))?;
let s2 = b.cast(&DataType::Array(Box::new(DataType::UInt64), a.width()))?;

let a: &ArrayChunked = s1.array()?;
let b: &ArrayChunked = s2.array()?;

try_binary_elementwise(a, b, |a, b| match (a, b) {
(Some(a), Some(b)) => {
if a.null_count() > 0 || b.null_count() > 0 {
polars_bail!(ComputeError: "array cannot contain nulls")
} else {
let a = &collect_into_uint64(a);
let b = &collect_into_uint64(b);
Ok(Some(f(a, b)))
}
}
_ => Ok(None),
})
}

pub fn euclidean_dist(
a: &ChunkedArray<FixedSizeListType>,
b: &ChunkedArray<FixedSizeListType>,
Expand All @@ -48,11 +98,17 @@ pub fn euclidean_dist(
ComputeError: "inner data types don't match"
);
polars_ensure!(
a.inner_dtype().is_float(),
ComputeError: "inner data types must be float"
a.inner_dtype().is_numeric(),
ComputeError: "inner data types must be numeric"
);

try_binary_elementwise(a, b, |a: Option<Box<dyn Array>>, b| match (a, b) {
let s1 = a.cast(&DataType::Array(Box::new(DataType::Float64), a.width()))?;
let s2 = b.cast(&DataType::Array(Box::new(DataType::Float64), a.width()))?;

let a: &ArrayChunked = s1.array()?;
let b: &ArrayChunked = s2.array()?;

try_binary_elementwise(a, b, |a, b| match (a, b) {
(Some(a), Some(b)) => {
if a.null_count() > 0 || b.null_count() > 0 {
polars_bail!(ComputeError: "array cannot contain nulls")
Expand Down Expand Up @@ -85,11 +141,17 @@ pub fn cosine_dist(
ComputeError: "inner data types don't match"
);
polars_ensure!(
a.inner_dtype().is_float(),
ComputeError: "inner data types must be float"
a.inner_dtype().is_numeric(),
ComputeError: "inner data types must be numeric"
);

try_binary_elementwise(a, b, |a: Option<Box<dyn Array>>, b| match (a, b) {
let s1 = a.cast(&DataType::Array(Box::new(DataType::Float64), a.width()))?;
let s2 = b.cast(&DataType::Array(Box::new(DataType::Float64), a.width()))?;

let a: &ArrayChunked = s1.array()?;
let b: &ArrayChunked = s2.array()?;

try_binary_elementwise(a, b, |a, b| match (a, b) {
(Some(a), Some(b)) => {
if a.null_count() > 0 || b.null_count() > 0 {
polars_bail!(ComputeError: "array cannot contain nulls")
Expand Down Expand Up @@ -120,3 +182,38 @@ pub fn cosine_dist(
_ => Ok(None),
})
}

pub fn minkowski_dist(
a: &ChunkedArray<FixedSizeListType>,
b: &ChunkedArray<FixedSizeListType>,
p: i32,
) -> PolarsResult<Float64Chunked> {
polars_ensure!(
a.inner_dtype() == b.inner_dtype(),
ComputeError: "inner data types don't match"
);
polars_ensure!(
a.inner_dtype().is_numeric(),
ComputeError: "inner data types must be numeric"
);

let s1 = a.cast(&DataType::Array(Box::new(DataType::Float64), a.width()))?;
let s2 = b.cast(&DataType::Array(Box::new(DataType::Float64), a.width()))?;

let a: &ArrayChunked = s1.array()?;
let b: &ArrayChunked = s2.array()?;

try_binary_elementwise(a, b, |a, b| match (a, b) {
(Some(a), Some(b)) => {
if a.null_count() > 0 || b.null_count() > 0 {
polars_bail!(ComputeError: "array cannot contain nulls")
} else {
let a = &collect_into_vecf64(a);
let b = &collect_into_vecf64(b);
let metric = minkowski(p);
Ok(Some(metric(a, b)))
}
}
_ => Ok(None),
})
}
Loading
Loading