Skip to content

Commit

Permalink
test: use temp output folders and pytest.parametrize
Browse files Browse the repository at this point in the history
  • Loading branch information
eginhard committed Dec 12, 2024
1 parent 033f166 commit 6f34c74
Show file tree
Hide file tree
Showing 13 changed files with 497 additions and 536 deletions.
407 changes: 202 additions & 205 deletions tests/data_tests/test_loader.py

Large diffs are not rendered by default.

8 changes: 3 additions & 5 deletions tests/inference_tests/test_synthesize.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,9 @@
import os
from tests import run_cli

from tests import get_tests_output_path, run_cli


def test_synthesize():
def test_synthesize(tmp_path):
"""Test synthesize.py with diffent arguments."""
output_path = os.path.join(get_tests_output_path(), "output.wav")
output_path = tmp_path / "output.wav"
run_cli("tts --list_models")

# single speaker model
Expand Down
73 changes: 36 additions & 37 deletions tests/vocoder_tests/test_fullband_melgan_train.py
Original file line number Diff line number Diff line change
@@ -1,43 +1,42 @@
import glob
import os
import shutil

from tests import get_device_id, get_tests_output_path, run_cli
from tests import get_device_id, run_cli
from TTS.vocoder.configs import FullbandMelganConfig

config_path = os.path.join(get_tests_output_path(), "test_vocoder_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")

config = FullbandMelganConfig(
batch_size=8,
eval_batch_size=8,
num_loader_workers=0,
num_eval_loader_workers=0,
run_eval=True,
test_delay_epochs=-1,
epochs=1,
seq_len=8192,
eval_split_size=1,
print_step=1,
print_eval=True,
data_path="tests/data/ljspeech",
discriminator_model_params={"base_channels": 16, "max_channels": 64, "downsample_factors": [4, 4, 4]},
output_path=output_path,
)
config.audio.do_trim_silence = True
config.audio.trim_db = 60
config.save_json(config_path)
def test_train(tmp_path):
config_path = tmp_path / "test_vocoder_config.json"
output_path = tmp_path / "train_outputs"

config = FullbandMelganConfig(
batch_size=8,
eval_batch_size=8,
num_loader_workers=0,
num_eval_loader_workers=0,
run_eval=True,
test_delay_epochs=-1,
epochs=1,
seq_len=8192,
eval_split_size=1,
print_step=1,
print_eval=True,
data_path="tests/data/ljspeech",
discriminator_model_params={"base_channels": 16, "max_channels": 64, "downsample_factors": [4, 4, 4]},
output_path=output_path,
)
config.audio.do_trim_silence = True
config.audio.trim_db = 60
config.save_json(config_path)

# train the model for one epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} "
run_cli(command_train)
# train the model for one epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} "
)
run_cli(command_train)

# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Find latest folder
continue_path = max(output_path.iterdir(), key=lambda p: p.stat().st_mtime)

# restore the model and continue training for one more epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} "
)
run_cli(command_train)
shutil.rmtree(continue_path)
# restore the model and continue training for one more epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} "
)
run_cli(command_train)
70 changes: 34 additions & 36 deletions tests/vocoder_tests/test_hifigan_train.py
Original file line number Diff line number Diff line change
@@ -1,43 +1,41 @@
import glob
import os
import shutil

from tests import get_device_id, get_tests_output_path, run_cli
from tests import get_device_id, run_cli
from TTS.vocoder.configs import HifiganConfig

config_path = os.path.join(get_tests_output_path(), "test_vocoder_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")

def test_train(tmp_path):
config_path = tmp_path / "test_vocoder_config.json"
output_path = tmp_path / "train_outputs"

config = HifiganConfig(
batch_size=8,
eval_batch_size=8,
num_loader_workers=0,
num_eval_loader_workers=0,
run_eval=True,
test_delay_epochs=-1,
epochs=1,
seq_len=1024,
eval_split_size=1,
print_step=1,
print_eval=True,
data_path="tests/data/ljspeech",
output_path=output_path,
)
config.audio.do_trim_silence = True
config.audio.trim_db = 60
config.save_json(config_path)
config = HifiganConfig(
batch_size=8,
eval_batch_size=8,
num_loader_workers=0,
num_eval_loader_workers=0,
run_eval=True,
test_delay_epochs=-1,
epochs=1,
seq_len=1024,
eval_split_size=1,
print_step=1,
print_eval=True,
data_path="tests/data/ljspeech",
output_path=output_path,
)
config.audio.do_trim_silence = True
config.audio.trim_db = 60
config.save_json(config_path)

# train the model for one epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} "
run_cli(command_train)
# train the model for one epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} "
)
run_cli(command_train)

# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Find latest folder
continue_path = max(output_path.iterdir(), key=lambda p: p.stat().st_mtime)

# restore the model and continue training for one more epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} "
)
run_cli(command_train)
shutil.rmtree(continue_path)
# restore the model and continue training for one more epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} "
)
run_cli(command_train)
73 changes: 36 additions & 37 deletions tests/vocoder_tests/test_melgan_train.py
Original file line number Diff line number Diff line change
@@ -1,43 +1,42 @@
import glob
import os
import shutil

from tests import get_device_id, get_tests_output_path, run_cli
from tests import get_device_id, run_cli
from TTS.vocoder.configs import MelganConfig

config_path = os.path.join(get_tests_output_path(), "test_vocoder_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")

config = MelganConfig(
batch_size=4,
eval_batch_size=4,
num_loader_workers=0,
num_eval_loader_workers=0,
run_eval=True,
test_delay_epochs=-1,
epochs=1,
seq_len=2048,
eval_split_size=1,
print_step=1,
discriminator_model_params={"base_channels": 16, "max_channels": 64, "downsample_factors": [4, 4, 4]},
print_eval=True,
data_path="tests/data/ljspeech",
output_path=output_path,
)
config.audio.do_trim_silence = True
config.audio.trim_db = 60
config.save_json(config_path)
def test_train(tmp_path):
config_path = tmp_path / "test_vocoder_config.json"
output_path = tmp_path / "train_outputs"

config = MelganConfig(
batch_size=4,
eval_batch_size=4,
num_loader_workers=0,
num_eval_loader_workers=0,
run_eval=True,
test_delay_epochs=-1,
epochs=1,
seq_len=2048,
eval_split_size=1,
print_step=1,
discriminator_model_params={"base_channels": 16, "max_channels": 64, "downsample_factors": [4, 4, 4]},
print_eval=True,
data_path="tests/data/ljspeech",
output_path=output_path,
)
config.audio.do_trim_silence = True
config.audio.trim_db = 60
config.save_json(config_path)

# train the model for one epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} "
run_cli(command_train)
# train the model for one epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} "
)
run_cli(command_train)

# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Find latest folder
continue_path = max(output_path.iterdir(), key=lambda p: p.stat().st_mtime)

# restore the model and continue training for one more epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} "
)
run_cli(command_train)
shutil.rmtree(continue_path)
# restore the model and continue training for one more epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} "
)
run_cli(command_train)
75 changes: 37 additions & 38 deletions tests/vocoder_tests/test_multiband_melgan_train.py
Original file line number Diff line number Diff line change
@@ -1,44 +1,43 @@
import glob
import os
import shutil

from tests import get_device_id, get_tests_output_path, run_cli
from tests import get_device_id, run_cli
from TTS.vocoder.configs import MultibandMelganConfig

config_path = os.path.join(get_tests_output_path(), "test_vocoder_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")

config = MultibandMelganConfig(
batch_size=8,
eval_batch_size=8,
num_loader_workers=0,
num_eval_loader_workers=0,
run_eval=True,
test_delay_epochs=-1,
epochs=1,
seq_len=8192,
eval_split_size=1,
print_step=1,
print_eval=True,
steps_to_start_discriminator=1,
data_path="tests/data/ljspeech",
discriminator_model_params={"base_channels": 16, "max_channels": 64, "downsample_factors": [4, 4, 4]},
output_path=output_path,
)
config.audio.do_trim_silence = True
config.audio.trim_db = 60
config.save_json(config_path)
def test_train(tmp_path):
config_path = tmp_path / "test_vocoder_config.json"
output_path = tmp_path / "train_outputs"

config = MultibandMelganConfig(
batch_size=8,
eval_batch_size=8,
num_loader_workers=0,
num_eval_loader_workers=0,
run_eval=True,
test_delay_epochs=-1,
epochs=1,
seq_len=8192,
eval_split_size=1,
print_step=1,
print_eval=True,
steps_to_start_discriminator=1,
data_path="tests/data/ljspeech",
discriminator_model_params={"base_channels": 16, "max_channels": 64, "downsample_factors": [4, 4, 4]},
output_path=output_path,
)
config.audio.do_trim_silence = True
config.audio.trim_db = 60
config.save_json(config_path)

# train the model for one epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} "
run_cli(command_train)
# train the model for one epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --config_path {config_path} "
)
run_cli(command_train)

# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Find latest folder
continue_path = max(output_path.iterdir(), key=lambda p: p.stat().st_mtime)

# restore the model and continue training for one more epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} "
)
run_cli(command_train)
shutil.rmtree(continue_path)
# restore the model and continue training for one more epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_vocoder.py --continue_path {continue_path} "
)
run_cli(command_train)
Loading

0 comments on commit 6f34c74

Please sign in to comment.