Skip to content

Build from source quantization packages #430

Build from source quantization packages

Build from source quantization packages #430

name: CLI CUDA Pytorch Single-GPU Tests
on:
workflow_dispatch:
push:
branches:
- main
paths:
- .github/workflows/test_cli_cuda_pytorch_single_gpu.yaml
- "optimum_benchmark/**"
- "docker/**"
- "tests/**"
- "setup.py"
pull_request:
branches:
- main
paths:
- .github/workflows/test_cli_cuda_pytorch_single_gpu.yaml
- "optimum_benchmark/**"
- "docker/**"
- "tests/**"
- "setup.py"
concurrency:
cancel-in-progress: true
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
env:
IMAGE: ghcr.io/huggingface/optimum-benchmark:latest-cuda
jobs:
run_cli_cuda_pytorch_single_gpu_tests:
runs-on: [single-gpu, nvidia-gpu, a10, ci]
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Run tests
uses: addnab/docker-run-action@v3
with:
image: ${{ env.IMAGE }}
options: |
--rm
--gpus all
--shm-size 64G
--env MKL_THREADING_LAYER=GNU
--volume ${{ github.workspace }}:/workspace
--workdir /workspace
run: |
pip install -e .[testing,diffusers,timm,peft,bitsandbytes,autoawq,auto-gptq]
python scripts/install_quantization_libs.py --install-autoawq-from-source --install-autogptq-from-source
pytest -x -s -k "cli and cuda and pytorch and not (dp or ddp or device_map or deepspeed) and not (awq)" --ignore=external_repos