Skip to content

notes of reading Hands-on Machine Learning with Scikit-learn, Keras, and TensorFlow (ed2)

License

Notifications You must be signed in to change notification settings

hopezh/learn_hands_on_ML_v2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

learn_hands_on_ML_v2

notes of reading Aurélien Geron's Hands-on Machine Learning with Scikit-learn, Keras, and TensorFlow (ed2)

  • 12. Custom models and training with tensorflow

    • Using TensorFlow like NumPy

      • Tensors and Operations
      • Tensors and NumPy
      • Type Conversions
      • Variables
      • Other Data Structures
    • Customizing Models and Training Algorithms

      • Custom Loss Functions
      • Saving and Loading Models That Contain Custom Components
      • Custom Activation Functions, Initializers, Regularizers, and Constraints
      • Custom Metrics
      • Custom Layers
      • Custom Models
      • Losses and Metrics Based on Model Internals
      • Computing Gradients Using Autodiff
      • Custom Training Loops
    • TensorFlow Functions and Graphs

      • AutoGraph and Tracing
      • TF Function Rules
    • Exercises

  • 13. Loading and preprocessing data with TensorFlow

    • The Data API
      • Chaining Transformations
      • Shuffling the Data
      • Preprocessing the Data
      • Putting Everything Together
      • Prefetching
      • Using the Dataset with tf.keras
    • The TFRecord Format
      • Compressed TFRecord Files
      • A Brief Introduction to Protocol Buffers
      • TensorFlow Protobufs
      • Loading and Parsing Examples
      • Handling Lists of Lists Using the SequenceExample Protobuf
    • Preprocessing the Input Features
      • Encoding Categorical Features Using One-Hot Vectors
      • Encoding Categorical Features Using Embeddings
      • Keras Preprocessing Layers
    • TF Transform
    • The TensorFlow Datasets (TFDS) Project
    • Exercises
  • 14. Deep Computer Vision Using Convolutional Neural Networks

    • The Architecture of the Visual Cortex
    • Convolutional Layers
      • Filters
      • Stacking Multiple Feature Maps
      • TensorFlow Implementation
      • Memory Requirements
    • Pooling Layers
      • TensorFlow Implementation
    • CNN Architectures
      • LeNet-5
      • AlexNet
      • GoogLeNet
      • VGGNet
      • ResNet
      • Xception
      • SENet
    • Implementing a ResNet-34 CNN Using Keras
    • Using Pretrained Models from Keras
    • Pretrained Models for Transfer Learning
    • Classification and Localization
    • Object Detection
      • Fully Convolutional Networks
      • You Only Look Once (YOLO)
    • Semantic Segmentation
    • Exercises

About

notes of reading Hands-on Machine Learning with Scikit-learn, Keras, and TensorFlow (ed2)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published