Skip to content

hongshuh/MatInFormer

Repository files navigation

MatInFormer: Materials Informatics Transformer

Hongshuo Huang, Rishikesh Magar ,Changwen Xu, Amir Barati Farimani
Carnegie Mellon University

This is the official implementation of MatInFormer: "Materials Informatics Transformer: A Language Model for Interpretable Materials Properties Prediction". In this work, we introduce a novel approach that involves learning the grammar of crystallography through the tokenization of pertinent space group information. We further illustrate the adaptability of MatInFormer by incorporating task-specific data pertaining to Metal-Organic Frameworks (MOFs).

Enviroment Set up

conda env create -f environment.yml

Example of SSL

cd /path/to/matinformer/
python sgt/pretrain.py

Here is a example data for lattice parameter prediction. Nottice The lattice parameter should be normalized.

material-id composition space group a b c $\alpha$ $\beta$ $\gamma$
foo-1 Hf2 Si2 Te2 P4/nmm 3.67 3.67 27.31 90 90 90
foo-2 Ti2 Br2 O2 Pmna 3.70 4.70 25.44 90 90 90

Example of fintune

For materials project benchmark, you can train and test by

python sgt/mb_train.py

if you want to run on your own dataset like MOFs, change the config file and run

python sgt/hoip_train.py

The model takes input in the form csv files with materials-ids, composition strings , space group symbol and target values as the columns.

material-id composition space group target
foo-1 Hf2 Si2 Te2 P4/nmm 63.5
foo-2 Ti2 Br2 O2 Pmna 134.8

Cite This Work

If you use this code please cite the relevant work:

MatInFormer - Materials Informatics Transformer: A Language Model for Interpretable Materials Properties Prediction [arXiv]

@article{huang2023materials,
  title={Materials Informatics Transformer: A Language Model for Interpretable Materials Properties Prediction},
  author={Huang, Hongshuo and Magar, Rishikesh and Xu, Changwen and Farimani, Amir Bariti},
  journal={arXiv preprint arXiv:2308.16259},
  year={2023}
}

wren - Rapid Discovery of Stable Materials by Coordinate-free Coarse Graining. [Paper] [arXiv]

@article{goodall_2022_rapid,
  title={Rapid discovery of stable materials by coordinate-free coarse graining},
  author={Goodall, Rhys EA and Parackal, Abhijith S and Faber, Felix A and Armiento, Rickard and Lee, Alpha A},
  journal={Science Advances},
  volume={8},
  number={30},
  pages={eabn4117},
  year={2022},
  publisher={American Association for the Advancement of Science}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages