Pytorch Code of FSA method for Cross-Modality Person Re-Identification (Visible Thermal Re-ID) on RegDB dataset and SYSU-MM01 dataset.
Dataset | Rank1 | mAP |
---|---|---|
RegDB | ~87.23% | ~80.70% |
SYSU-MM01 | ~73.63% | ~69.25% |
Our code extends the pytorch implementation of Cross-Modal-Re-ID-baseline in Github. Please refer to the offical repo for details of data preparation.
Train a model by
python train_ext.py --dataset sysu --lr 0.1 --batch-size 6 --num_pos 4 --fsa_method FSA --lam 0.8 --gpu 0
-
--dataset
: which dataset "sysu" or "regdb". -
--lr
: initial learning rate. -
--gpu
: which gpu to run. -
--fsa_method
: which semantic augmentation method to use.
Test a model on SYSU-MM01 or RegDB dataset by using testing augmentation with HorizontalFlip
python testa.py --mode all --resume 'model_path' --gpu 0 --dataset sysu
-
--dataset
: which dataset "sysu" or "regdb". -
--mode
: "all" or "indoor" all search or indoor search (only for sysu dataset). -
--trial
: testing trial (only for RegDB dataset). -
--resume
: the saved model path. -
--gpu
: which gpu to run.
Please kindly cite the following paper in your publications if it helps your research:
@article{liu2020parameter,
title={Parameter sharing exploration and hetero-center triplet loss for visible-thermal person re-identification},
author={Liu, Haijun and Tan, Xiaoheng and Zhou, Xichuan},
journal={IEEE Transactions on Multimedia},
volume={23},
pages={4414--4425},
year={2020},
publisher={IEEE}
}
@article{liu2021strong,
title={Strong but simple baseline with dual-granularity triplet loss for visible-thermal person re-identification},
author={Liu, Haijun and Chai, Yanxia and Tan, Xiaoheng and Li, Dong and Zhou, Xichuan},
journal={IEEE Signal Processing Letters},
volume={28},
pages={653--657},
year={2021},
publisher={IEEE}
}
@article{Tan2022AFS,
title={A Fourier-Based Semantic Augmentation for Visible-Thermal Person Re-Identification},
author={Xiaoheng Tan and Yanxia Chai and Fenglei Chen and Haijun Liu},
journal={IEEE Signal Processing Letters},
year={2022},
volume={29},
pages={1684-1688}
}