Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Nadav's Suggested 'models.py' #1

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
75 changes: 52 additions & 23 deletions python/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,19 +15,62 @@
from keras.layers import Input, Dense, Dropout
from keras.models import Model, Sequential
from keras import callbacks, regularizers
import keras.backend as K
from sklearn.metrics import roc_curve, auc,roc_auc_score
from sklearn.model_selection import train_test_split, KFold, StratifiedKFold
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler

### Custom imports
from functions import *

def prepare_data(df, vars_list):
"""Prepare data for training/testing/validation."""
sc = StandardScaler()
x = sc.fit_transform(df[vars_list])
y = df.label.to_numpy()
return x, y

def build_model(input_dim, layer_size=200, dropout=0.2):
"""Create and compile a model."""
model = Sequential()
model.add(Dense(layer_size, input_dim=input_dim, activation='relu'))
if dropout != 0: model.add(Dropout(dropout))
model.add(Dense(layer_size, activation='relu'))
if dropout != 0: model.add(Dropout(dropout))
model.add(Dense(layer_size, activation='relu'))
if dropout != 0: model.add(Dropout(dropout))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model

def reset_weights(model):
session = K.get_session()
for layer in model.layers:
if hasattr(layer, 'kernel_initializer') and layer.kernel.initializer is not None:
layer.kernel.initializer.run(session=session)


def get_callbacks(patience, weights_path):
"""Generate a list of callbacks for Keras model."""
early_stopping = callbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=0)
checkpoint = callbacks.ModelCheckpoint(weights_path, monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=True)
return [checkpoint, early_stopping]




def train(df, layer_size=200, batch_size=10000, dropout=0.2, epochs=100, patience=30, n_folds=5, best_of_n_loops=3, save_folder=None, other_callbacks=None, verbose=True, scan_over_mu_phi=False, apply_cuts=True):
os.makedirs(save_folder, exist_ok=True)
if scan_over_mu_phi:
training_vars = ['ϕ', 'λ', 'μ_λ', 'b-r', 'g']
else:
training_vars = ['ϕ', 'λ', 'μ_ϕcosλ', 'b-r', 'g']

training_vars = ['p1', 'p2', 'p3', 'p4', 'p5']

# Build the model
model=build_model(len(training_vars))

### Explicitly get indices of stars for each k-fold
skf = StratifiedKFold(n_splits=n_folds, shuffle=True, random_state=15)
Expand Down Expand Up @@ -59,18 +102,11 @@ def train(df, layer_size=200, batch_size=10000, dropout=0.2, epochs=100, patienc
train = df.iloc[train_stars]
val = df.iloc[val_stars]
test = df.iloc[test_stars]

### Standardize the inputs (x) and create the array of labels (y)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
train_x = sc.fit_transform(train[training_vars])
train_y = train.label.to_numpy()

val_x = sc.transform(val[training_vars])
val_y = val.label.to_numpy()

test_x = sc.transform(test[training_vars])
test_y = test.label.to_numpy()
train_x, train_y= prepare_data(train, training_vars)
val_x, val_y= prepare_data(val, training_vars)
test_x, test_y= prepare_data(test, training_vars)

### Temporary -- apply an extra weight to the signal region
if "weight" not in train.keys():
Expand All @@ -85,16 +121,8 @@ def train(df, layer_size=200, batch_size=10000, dropout=0.2, epochs=100, patienc
for n in range(best_of_n_loops):
os.makedirs(os.path.join(save_folder_val, "loop_{}".format(n)), exist_ok=True)

### Define model architecture
model = Sequential()
model.add(Dense(layer_size, input_dim=len(training_vars), activation='relu'))
if dropout != 0: model.add(Dropout(dropout))
model.add(Dense(layer_size, activation='relu'))
if dropout != 0: model.add(Dropout(dropout))
model.add(Dense(layer_size, activation='relu'))
if dropout != 0: model.add(Dropout(dropout))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
### Reset model weights
reset_weights(model)

### Early stopping (stops training if val_loss doesn't improve for [patience] straight epochs)
early_stopping = callbacks.EarlyStopping(monitor='val_loss',
Expand All @@ -109,6 +137,8 @@ def train(df, layer_size=200, batch_size=10000, dropout=0.2, epochs=100, patienc
verbose=0,
save_best_only=True,
save_weights_only=True)



### Add any additional callbacks for training
callbacks_list = [checkpoint,early_stopping]
Expand Down Expand Up @@ -175,5 +205,4 @@ def train(df, layer_size=200, batch_size=10000, dropout=0.2, epochs=100, patienc
plot_results(fiducial_cuts(test_full), save_folder=os.path.join(save_folder, "after_fiducial_cuts"))

return(test_full)