Skip to content

Commit

Permalink
add redirection to home
Browse files Browse the repository at this point in the history
  • Loading branch information
snyhlxde1 committed Mar 3, 2024
1 parent b5744a6 commit d883f6e
Show file tree
Hide file tree
Showing 3 changed files with 22 additions and 6 deletions.
2 changes: 1 addition & 1 deletion hugo.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ menu:
weight: 10
- identifier: Blogs
name: Blogs
url:
url: ''
weight: 30
- identifier: People
name: People
Expand Down
18 changes: 17 additions & 1 deletion public/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -144,7 +144,23 @@
</ul>
</nav>
</header>
<main class="main"><div class="posts-list"></div>
<main class="main"><div class="posts-list"><article class="post-preview">
<div class="post-image">
<img src="http://localhost:1313/img/objective_illustration_global.jpg" alt="">
</div><div class="post-details">
<h2><a href="http://localhost:1313/posts/cllm/">Consistency Large Language Models: A Family of Efficient Parallel Decoders</a></h2>
<time datetime="2024-02-21 12:00:00 -0800 PST">February 21, 2024</time>
<p class="post-author"> Siqi Kou*, Lanxiang Hu*, Zhezhi He, Zhijie Deng, Hao Zhang</p>
<p style="text-align: justify;">TL;DR: In this blog, we introduce consistency large language models (CLLMs), a new family of models developed with our proposed techniques to reduce inference latency by efficiently decoding $n$ tokens in parallel. This decoding method is called Jacobi decoding, which improves inference efficiency by breaking the sequential nature of conventional auto-regressive (AR) decoding. CLLMs are trained with the objective of performing efficient Jacobi decoding by mapping any randomly initialized $n$-token sequence to a correctly predicted sequence in as few steps as possible.</p></div>
</article><article class="post-preview">
<div class="post-image">
<img src="http://localhost:1313/img/slider/lookahead_decoding.jpg" alt="">
</div><div class="post-details">
<h2><a href="http://localhost:1313/posts/lookahead_decoding/">Break the Sequential Dependency of LLM Inference Using Lookahead Decoding</a></h2>
<time datetime="2023-11-21 12:00:00 -0800 PST">November 21, 2023</time>
<p class="post-author"> Yichao Fu, Peter Bailis, Ion Stoica, Hao Zhang</p>
<p style="text-align: justify;">TL;DR: We introduce lookahead decoding, a new, exact, and parallel decoding algorithm to accelerate LLM inference. Lookahead decoding breaks the sequential dependency in autoregressive decoding by concurrently extracting and verifying n-grams directly with the LLM, utilizing the Jacobi iteration method. Lookahead decoding functions without the need for a draft model or a data store. It linearly decreases the number of decoding steps directly correlating with the log(FLOPs) used per decoding step.</p></div>
</article></div>
</main>

<footer class="footer">
Expand Down
8 changes: 4 additions & 4 deletions public/sitemap.xml
Original file line number Diff line number Diff line change
Expand Up @@ -2,16 +2,16 @@
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"
xmlns:xhtml="http://www.w3.org/1999/xhtml">
<url>
<loc>http://localhost:1313/blogs/</loc>
<loc>http://localhost:1313/posts/cllm/</loc>
<lastmod>2024-02-21T12:00:00-08:00</lastmod>
</url><url>
<loc>http://localhost:1313/blogs/cllm/</loc>
<loc>http://localhost:1313/</loc>
<lastmod>2024-02-21T12:00:00-08:00</lastmod>
</url><url>
<loc>http://localhost:1313/</loc>
<loc>http://localhost:1313/posts/</loc>
<lastmod>2024-02-21T12:00:00-08:00</lastmod>
</url><url>
<loc>http://localhost:1313/blogs/lookahead_decoding/</loc>
<loc>http://localhost:1313/posts/lookahead_decoding/</loc>
<lastmod>2023-11-21T12:00:00-08:00</lastmod>
</url><url>
<loc>http://localhost:1313/contact/</loc>
Expand Down

0 comments on commit d883f6e

Please sign in to comment.