Skip to content
/ ELF Public
forked from facebookresearch/ELF

An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games

License

Notifications You must be signed in to change notification settings

gracekk/ELF

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ELF: An Extensive, Lightweight and Flexible Platform for Game Research

Overview

ELF is an Extensive, Lightweight and Flexible platform for game research, in particular for real-time strategy (RTS) games. On the C++-side, ELF hosts multiple games in parallel with C++ threading. On the Python side, ELF returns one batch of game state at a time, making it very friendly for modern RL. On the other hand, in other platforms (e.g., OpenAI Gym), one Python interface only incorporates one single game instance. This makes concurrent game execution a bit complicated, which is a requirement of many modern reinforcement learning algorithms.

For research on RTS games, ELF comes with an fast RTS engine, and three concrete environments: MiniRTS, Capture the Flag and Tower Defense. MiniRTS has all the key dynamics of a real-time strategy game, including gathering resources, building facilities and troops, scouting the unknown territories outside the perceivable regions, and defend/attack the enemy. User can access its internal representation and can freely change the game setting.

Overview

ELF has the following characteristics:

  • Extensive: Any game with C/C++ interface can be plugged into this framework by writing a simple wrapper. As an example, we already incorporate Atari games into our framework and show that the simulation speed per core is comparable with single-core version, and is thus much faster than implementation using either multiprocessing or Python multithreading.

  • Lightweight: ELF runs very fast with minimal overhead. ELF with a simple game (MiniRTS) built on RTS engine runs 40K frame per second per core on a MacBook Pro. Training a model from scratch to play MiniRTS takes a day on 6 CPU + 1 GPU.

  • Flexible: Pairing between environments and actors is very flexible, e.g., one environment with one agent (e.g., Vanilla A3C), one environment with multiple agents (e.g., Self-play/MCTS), or multiple environment with one actor (e.g., BatchA3C, GA3C). Also, any game built on top of the RTS engine offers full access to its internal representation and dynamics. Besides efficient simulators, we also provide a lightweight yet powerful Reinforcement Learning framework. This framework can host most existing RL algorithms. In this open source release, we have provided state-of-the-art actor-critic algorithms, written in PyTorch.

Code Hierarchy

ELF is organized as follows. Hierarchy of ELF

  • The folder elf contains the game-independent codebase to handle concurrent simulation.
  • The folder atari contains the wrapper and model for Atari games (ALE is required).
  • The folder rts/engine contains the RTS engine. rts/game_MC, rts/game_CF and rts/game_TD are the three games built on top of the engine.

Basic Usage

The pseudo code of ELF is the following.

The initialization looks like the following:

# We run 1024 games concurrently.
num_games = 1024

# Wait for a batch of 256 games.
batchsize = 256  

# The return states contain key 's', 'r' and 'terminal'
# The reply contains key 'a' to be filled from the Python side.
# The definitions of the keys are in the wrapper of the game.  
input_spec = dict(s='', r='', terminal='')
reply_spec = dict(a='')

context = Init(num_games, batchsize, input_spec, reply_spec)

The main loop is also very simple:

# Start all game threads and enter main loop.
context.Start()  
while True:
    # Wait for a batch of game states to be ready
    # These games will be blocked, waiting for replies.
    batch = context.Wait()

    # Apply a model to the game state. The output has key 'pi'
    # You can do whatever you want here. E.g., applying your favorite RL algorithms.
    output = model(batch)

    # Sample from the output to get the actions of this batch.
    reply['a'][:] = SampleFromDistribution(output)

    # Resume games.
    context.Steps()   

# Stop all game threads.
context.Stop()  

Dependency

C++ compiler with C++11 support (e.g., gcc 4.9) is required. The following libraries are required:

tbb

Reference

When you use ELF, please reference the associated arXiv paper.

About

An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 73.2%
  • Python 22.1%
  • JavaScript 2.5%
  • Makefile 2.2%