Skip to content

gkobeaga/op-solver

Repository files navigation

op-solver

Algorithms for the Orienteering Problem

Actions Status Actions Status Lines Files License


In this repository, you will find the implementation of two algorithms to solve the Orienteering Problem (OP):

Both algorithms can be used to solve either small or large OP problems. Choose between the heuristic or the exact algorithm depending on your needs.

animated

Installation

First, obtain the source code,

git clone https://github.com/gkobeaga/op-solver
cd op-solver

install the dependencies,

sudo apt install autoconf automake libtool m4 libgmp-dev

and generate the configure script.

./autogen.sh
mkdir -p build && cd build

Since the external LP solver used in the exact algorithm is proprietary software, there are two options to install our software: to build only the heuristic algorithm or to build both the heuristic and the exact algorithms.

1) Install Heuristic

By default, the solver is built only with the heuristic algorithm:

make clean
../configure
make

2) Install Heuristic and Exact

To build the exact algorithm, you need to have the IBM ILOG CPLEX installed in your system. To build the op-solver with the exact algorithm:

make clean
../configure --with-cplex=<CPLEX_PATH>
#../configure --with-cplex=/opt/ibm/ILOG/CPLEX_Studio125/cplex/
make

Usage

Download first the benchmark instances for the OP:

cd build
git clone https://github.com/bcamath-ds/OPLib.git

To solve the problem using the EA4OP algorithm:

./src/op-solver opt --op-exact 0 OPLib/instances/gen3/kroA150-gen3-50.oplib

To solve the OP using the revisited Branch-and-Cut algorithm(RB&C):

./src/op-solver opt --op-exact 1 OPLib/instances/gen3/kroA150-gen3-50.oplib

You can increase the verbosity of the RB&C with:

./src/op-solver opt --op-exact 1 --op-exact-bac-verbose 1 OPLib/instances/gen3/kroA150-gen3-50.oplib

Running on Docker

Only available for the heuristic algorithm.

git clone https://github.com/gkobeaga/op-solver
cd op-solver
docker build -t op-solver .
mkdir tmp
docker run -v $PWD/tmp:/tmp -it --rm op-solver opt /OPLib/instances/gen3/kroA150-gen3-50.oplib
cat tmp/stats.json

Output

By default, the results of the runs are written in a common stats.json file. You can specify an alternative file to write the results:

./src/op-solver opt --stats my-stats.json OPLib/instances/gen3/kroA150-gen3-50.oplib

Heuristic Output

The output of the evolutionary algorithm is split into two parts: the population initialization part and the evolution part.

{
  "prob": {
    "name": "kroA150",
    "n": 150,
    "d0": 13262
  },
  "sol": {
    "val": 4110,
    "cap": 13146,
    "sol_ns": 70,
    "lb": 4110,
    "ub": 1e+30,
    "cycle": [ 1, 47, 113, 84, 24, 38, 36, 127, 59, 141, 17, 15, 11, 32, 109, 91, 98, 23, 60,
               62, 20, 12, 86, 27, 149, 55, 83, 120, 115, 123, 43, 3, 46, 29, 132, 112, 107,
               30, 121, 101, 39, 78, 96, 52, 5, 37, 103, 146, 76, 13, 33, 95, 82, 116, 50, 73,
               68, 85, 135, 140, 117, 9, 7, 57, 51, 125, 61, 58, 105, 142 ]
  },
  "param": {
    "time_limit": 18000000,
    "init": 2,
    "select": 0,
    "pinit": 0
  },
  "stats": {
    "time": 205
  },
  "timestamp": 1618594637202,
  "event": "stats_summary",
  "env": "cp_init",
  "seed": 996021,
  "pid": 140336
}
{
  "prob": {
    "name": "kroA150",
    "n": 150,
    "d0": 13262
  },
  "sol": {
    "val": 5019,
    "cap": 13197,
    "sol_ns": 79,
    "lb": 5019,
    "ub": 1e+30,
    "cycle": [ 1, 130, 93, 28, 58, 61, 81, 25, 125, 51, 87, 145, 140, 135, 85, 68, 73, 114,
               144, 44, 50, 116, 82, 126, 95, 13, 76, 33, 146, 103, 37, 5, 52, 78, 96, 39,
               101, 121, 30, 107, 112, 132, 29, 46, 3, 14, 48, 100, 71, 41, 136, 128, 43,
               123, 115, 120, 149, 55, 83, 34, 117, 9, 7, 57, 20, 12, 27, 86, 35, 150, 62,
               60, 77, 110, 23, 98, 91, 109, 47 ]
  },
  "param": {
    "time_limit": 18000000,
    "it_lim": 2147483647,
    "pop_size": 100,
    "pop_stop": 25,
    "d2d": 50,
    "nparsel": 10,
    "pmut": 0.01,
    "len_improve1": 1,
    "len_improve2": 0
  },
  "stats": {
    "time": 748,
    "it": 750,
    "time_infeas_recover": 711
  },
  "timestamp": 1618594637951,
  "event": "stats_summary",
  "env": "cp_heur_ea",
  "seed": 996021,
  "pid": 140336
}

Note that, the two outputs share the same pid and seed, which can be then used to obtain the total running time.

jq -s 'group_by(.seed, .pid)[] | .[1].stats.time += .[0].stats.time | .[0] * .[1]' stats.json

This jq command will merge the population initialization parameters and evolutionary algorithm parameters, and sum the running times.

{
  "prob": {
    "name": "kroA150",
    "n": 150,
    "d0": 13262
  },
  "sol": {
    "val": 5019,
    "cap": 13197,
    "sol_ns": 79,
    "lb": 5019,
    "ub": 1e+30,
    "cycle": [ 1, 130, 93, 28, 58, 61, 81, 25, 125, 51, 87, 145, 140, 135, 85, 68, 73, 114,
               144, 44, 50, 116, 82, 126, 95, 13, 76, 33, 146, 103, 37, 5, 52, 78, 96, 39,
               101, 121, 30, 107, 112, 132, 29, 46, 3, 14, 48, 100, 71, 41, 136, 128, 43,
               123, 115, 120, 149, 55, 83, 34, 117, 9, 7, 57, 20, 12, 27, 86, 35, 150, 62,
               60, 77, 110, 23, 98, 91, 109, 47 ]
  },
  "param": {
    "time_limit": 18000000,
    "init": 2,
    "select": 0,
    "pinit": 0,
    "it_lim": 2147483647,
    "pop_size": 100,
    "pop_stop": 25,
    "d2d": 50,
    "nparsel": 10,
    "pmut": 0.01,
    "len_improve1": 1,
    "len_improve2": 0
  },
  "stats": {
    "time": 953,
    "it": 750,
    "time_infeas_recover": 711
  },
  "timestamp": 1618594637951,
  "event": "stats_summary",
  "env": "cp_heur_ea",
  "seed": 996021,
  "pid": 140336
}

RB&C Output

The RB&C algorithm reports the following stats for each of the separation algorithms:

Stat Description
*_active Number of times that the separation algorithm was used
*_success Number of times that the separation algorithm found at least a violated cut
*_total Total number of violated cuts found by the separation algorithm
*_time Total running time of the separation algorithm
{
  "prob": {
    "name": "kroA150",
    "n": 150,
    "d0": 13262
  },
  "sol": {
    "val": 5039,
    "cap": 13246,
    "sol_ns": 79,
    "lb": 5039,
    "ub": 5039,
    "cycle": [ 1, 93, 28, 58, 61, 25, 81, 69, 64, 40, 54, 2, 144, 114, 44, 50, 116, 82, 126,
               95, 13, 76, 33, 146, 103, 37, 5, 52, 78, 96, 39, 101, 121, 30, 107, 112, 132,
               29, 46, 3, 14, 48, 100, 71, 41, 136, 128, 43, 123, 115, 120, 149, 55, 83, 34,
               135, 140, 125, 51, 87, 145, 9, 117, 7, 57, 20, 12, 27, 86, 150, 62, 60, 77,
               110, 23, 98, 91, 109, 47 ]
  },
  "param": {
    "sep_logical": 1,
    "sep_sec_comps": 1,
    "sep_sec_exact": 3,
    "sep_sec_cc_2": 0,
    "sep_sec_cc_extra": 1,
    "sep_blossom_fst": 0,
    "sep_blossom_eph": 1,
    "sep_blossom_egh": 1,
    "sep_cover_edge": 1,
    "sep_cover_vertex": 0,
    "sep_cover_cycle": 1,
    "sep_path": 1,
    "sep_loop": 1,
    "sep_srk_rule": 4,
    "sep_srk_s2": 0,
    "sep_srk_s3": 1,
    "sep_srk_extra": 1,
    "xheur_vph": 1,
    "xheur_vph_meta": 1
  },
  "stats": {
    "time": 37247,
    "sep_logical_active": 2267,
    "sep_logical_success": 290,
    "sep_logical_total": 538,
    "sep_logical_time": 910,
    "sep_sec_comps_active": 2267,
    "sep_sec_comps_success": 34,
    "sep_sec_comps_total": 727,
    "sep_sec_comps_time": 173,
    "sep_sec_exact_active": 937,
    "sep_sec_exact_success": 754,
    "sep_sec_exact_total": 6454,
    "sep_sec_exact_time": 3665,
    "sep_blossom_fast_active": 961,
    "sep_blossom_fast_success": 134,
    "sep_blossom_fast_total": 326,
    "sep_blossom_fast_time": 583,
    "sep_blossom_ghfast_active": 948,
    "sep_blossom_ghfast_success": 90,
    "sep_blossom_ghfast_total": 160,
    "sep_blossom_ghfast_time": 326,
    "sep_blossom_mst_active": 0,
    "sep_blossom_mst_success": 0,
    "sep_blossom_mst_total": 0,
    "sep_blossom_mst_time": 0,
    "sep_cover_edge_active": 507,
    "sep_cover_edge_success": 40,
    "sep_cover_edge_total": 40,
    "sep_cover_edge_time": 993,
    "sep_cover_cycle_active": 884,
    "sep_cover_cycle_success": 2,
    "sep_cover_cycle_total": 2,
    "sep_cover_cycle_time": 58,
    "sep_cover_vertex_active": 0,
    "sep_cover_vertex_success": 0,
    "sep_cover_vertex_total": 40,
    "sep_cover_vertex_time": 0,
    "sep_path_active": 504,
    "sep_path_success": 37,
    "sep_path_total": 298,
    "sep_path_time": 264,
    "sep_loop_time": 13407,
    "sep_loop_it_time": 0,
    "sep_loop_inner_time": 3075,
    "sep_loop_inner_it_time": 1167,
    "sep_loop_middle_time": 11909,
    "sep_loop_middle_it_time": 10262,
    "sep_loop_outer_time": 13407,
    "sep_loop_outer_it_time": 2728,
    "age_cut_time": 843,
    "age_vars_time": 1020,
    "add_vars_time": 7045,
    "add_cuts_time": 5834,
    "xheur_branch_time": 26,
    "xheur_sep_time": 2302
  },
  "timestamp": 1618593157989,
  "event": "stats_summary",
  "env": "cp_exact_bac",
  "seed": 696815,
  "pid": 134228
}

Acknowledgments

The RB&C algorithm for large OP problems would not be possible without the following implementations: