Skip to content

Two-Stream KAN Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition

License

Notifications You must be signed in to change notification settings

gguzzy/2s-KAGCN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

2s-KAGCN

Two-Stream Adaptive Kolmogorov-Arnold Network Graph Convolutional Networks for Skeleton-Based Action Recognition

Note

This is based on 2s-AGCN repository. The main innovation has been the introduction of a new backbone, the so-called KAN network. We used the efficient-Kan version, but in the future more efficient models could be introduced. Wait for those in the next months!

Data Preparation

  • Download the raw data from NTU-RGB+D and Skeleton-Kinetics. Then put them under the data directory:

     -data\  
       -kinetics_raw\  
         -kinetics_train\
           ...
         -kinetics_val\
           ...
         -kinetics_train_label.json
         -keintics_val_label.json
       -nturgbd_raw\  
         -nturgb+d_skeletons\
           ...
         -samples_with_missing_skeletons.txt
    
  • Preprocess the data with

    python data_gen/ntu_gendata.py

    python data_gen/kinetics-gendata.py.

  • Generate the bone data with:

    python data_gen/gen_bone_data.py

Training & Testing

Change the config file depending on what you want.

`python main.py --config ./config/nturgbd-cross-view/train_joint.yaml`

`python main.py --config ./config/nturgbd-cross-view/train_bone.yaml`

To ensemble the results of joints and bones, run test firstly to generate the scores of the softmax layer.

`python main.py --config ./config/nturgbd-cross-view/test_joint.yaml`

`python main.py --config ./config/nturgbd-cross-view/test_bone.yaml`

Then combine the generated scores with:

`python ensemble.py` --datasets ntu/xview

To do:

  1. Complete training for the whole script and compare results with official paper.
  2. Use additional models to compare results and select the best model.

Citation

Please cite the following paper if you use this repository in your reseach.

@inproceedings{2sagcn2019cvpr,  
      title     = {Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition},  
      author    = {Lei Shi and Yifan Zhang and Jian Cheng and Hanqing Lu},  
      booktitle = {CVPR},  
      year      = {2019},  
}

@article{shi_skeleton-based_2019,
    title = {Skeleton-{Based} {Action} {Recognition} with {Multi}-{Stream} {Adaptive} {Graph} {Convolutional} {Networks}},
    journal = {arXiv:1912.06971 [cs]},
    author = {Shi, Lei and Zhang, Yifan and Cheng, Jian and LU, Hanqing},
    month = dec,
    year = {2019},
}

Contact

For any questions, feel free to contact: [email protected]

About

Two-Stream KAN Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

 

Packages

No packages published

Languages