Two-Stream Adaptive Kolmogorov-Arnold Network Graph Convolutional Networks for Skeleton-Based Action Recognition
This is based on 2s-AGCN repository. The main innovation has been the introduction of a new backbone, the so-called KAN network. We used the efficient-Kan version, but in the future more efficient models could be introduced. Wait for those in the next months!
-
Download the raw data from NTU-RGB+D and Skeleton-Kinetics. Then put them under the data directory:
-data\ -kinetics_raw\ -kinetics_train\ ... -kinetics_val\ ... -kinetics_train_label.json -keintics_val_label.json -nturgbd_raw\ -nturgb+d_skeletons\ ... -samples_with_missing_skeletons.txt
-
Preprocess the data with
python data_gen/ntu_gendata.py
python data_gen/kinetics-gendata.py.
-
Generate the bone data with:
python data_gen/gen_bone_data.py
Change the config file depending on what you want.
`python main.py --config ./config/nturgbd-cross-view/train_joint.yaml`
`python main.py --config ./config/nturgbd-cross-view/train_bone.yaml`
To ensemble the results of joints and bones, run test firstly to generate the scores of the softmax layer.
`python main.py --config ./config/nturgbd-cross-view/test_joint.yaml`
`python main.py --config ./config/nturgbd-cross-view/test_bone.yaml`
Then combine the generated scores with:
`python ensemble.py` --datasets ntu/xview
- Complete training for the whole script and compare results with official paper.
- Use additional models to compare results and select the best model.
Please cite the following paper if you use this repository in your reseach.
@inproceedings{2sagcn2019cvpr,
title = {Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition},
author = {Lei Shi and Yifan Zhang and Jian Cheng and Hanqing Lu},
booktitle = {CVPR},
year = {2019},
}
@article{shi_skeleton-based_2019,
title = {Skeleton-{Based} {Action} {Recognition} with {Multi}-{Stream} {Adaptive} {Graph} {Convolutional} {Networks}},
journal = {arXiv:1912.06971 [cs]},
author = {Shi, Lei and Zhang, Yifan and Cheng, Jian and LU, Hanqing},
month = dec,
year = {2019},
}
For any questions, feel free to contact: [email protected]