Skip to content

francois-baptiste/geo-openstreetmap

 
 

Repository files navigation

OSM to BigQuery

This doc describes a setup process of the Cloud Composer pipeline for exporting OSM planet or OSM history files to BigQuery.

pipeline_graph

Source files

URL of the source Planet file and it's MD5 hash should be saved into following variables:

  • for Planet file
OSM_URL=https://ftp5.gwdg.de/pub/misc/openstreetmap/planet.openstreetmap.org/pbf/planet-latest.osm.pbf
OSM_MD5_URL=https://ftp5.gwdg.de/pub/misc/openstreetmap/planet.openstreetmap.org/pbf/planet-latest.osm.pbf.md5
  • for History file
OSM_URL=https://ftp5.gwdg.de/pub/misc/openstreetmap/planet.openstreetmap.org/pbf/full-history/history-latest.osm.pbf
OSM_MD5_URL=https://ftp5.gwdg.de/pub/misc/openstreetmap/planet.openstreetmap.org/pbf/full-history/history-latest.osm.pbf.md5

There is some restrictions for the original files mirror that not allow to use Storage Transfer API for copying files. That why we suggest to use of of the alternative mirrors, e.g. GWDG

Environment preparing

Following steps should be performed to prepare your GCP environment:

  1. Make sure you have created Google Cloud Project and linked it to a billing account. Store project id and environment location into your shell session with the following command:

    PROJECT_ID=`gcloud config get-value project`
    REGION_LOCATION=`gcloud config get-value compute/region`
  2. Enable the Cloud Composer API

  3. Enable the Storage Transfer API

  4. Create GCS buckets:

    • For GCS Transfer of the source files:
    TRANSFER_BUCKET_NAME=${PROJECT_ID}-transfer
    gsutil mb gs://${TRANSFER_BUCKET_NAME}/
    • For intermediate results:
    WORK_BUCKET_NAME=${PROJECT_ID}-work
    gsutil mb gs://${WORK_BUCKET_NAME}/
  5. Add the required permissions for using Storage Transfer API. Don't miss to add a roles/storage.legacyBucketReader role to your Storage Transfer Service Account for the TRANSFER_BUCKET_NAME (this process described at the Setting up access to the data sink section)

  6. Create the BigQuery dataset:

    BQ_DATASET=osm_to_bq # customize dataset name
    bq mk ${PROJECT_ID}:${BQ_DATASET}

Uploading images to Container Registry

  1. Choose a hostname, which specifies location where you will store the image. Details: Pushing and pulling images
    IMAGE_HOSTNAME=(image_hostname) # e.g. `gcr.io` to hosts images in data centers in the United States
  2. Build and upload to Container Registry generate_layers Docker image:
    GENERATE_LAYERS_IMAGE=$IMAGE_HOSTNAME/$PROJECT_ID/generate_layers
    docker build -t $GENERATE_LAYERS_IMAGE tasks_docker_images/generate_layers/
    docker push $GENERATE_LAYERS_IMAGE

Planet file processing images

This images should be uploaded only if you are working with a Planet file

  1. Build and upload to Container Registry osm_to_features Docker image:
    OSM_TO_FEATURES_IMAGE=$IMAGE_HOSTNAME/$PROJECT_ID/osm_to_features
    docker build -t $OSM_TO_FEATURES_IMAGE tasks_docker_images/osm_to_features/
    docker push $OSM_TO_FEATURES_IMAGE
  2. Build and upload to Container Registry osm_to_nodes_ways_relations Docker image:
    OSM_TO_NODES_WAYS_RELATIONS_IMAGE=$IMAGE_HOSTNAME/$PROJECT_ID/osm_to_nodes_ways_relations
    docker build -t $OSM_TO_NODES_WAYS_RELATIONS_IMAGE tasks_docker_images/osm_to_nodes_ways_relations/
    docker push $OSM_TO_NODES_WAYS_RELATIONS_IMAGE

History file processing images

This images should be uploaded only if you are working with a History file

  1. Build and upload to Container Registry osm_converter_with_history_index Docker image:
    OSM_CONVERTER_WITH_HISTORY_INDEX_IMAGE=$IMAGE_HOSTNAME/$PROJECT_ID/osm_converter_with_history_index
    docker build -t $OSM_CONVERTER_WITH_HISTORY_INDEX_IMAGE tasks_docker_images/osm_converter_with_history_index/
    docker push $OSM_CONVERTER_WITH_HISTORY_INDEX_IMAGE

Composer setup

  1. Create the Cloud Composer environment:
    COMPOSER_ENV_NAME=osm-to-bq
    gcloud composer environments create $COMPOSER_ENV_NAME \
        --location $REGION_LOCATION

Create GKE node pools

For resource high-consuming operations we should create separate GCK node pools

  1. Get needed parameters for the GKE node pool creation:

    GKE_CLUSTER_FULL_NAME=$(gcloud composer environments describe $COMPOSER_ENV_NAME \
        --location $REGION_LOCATION --format json | jq -r '.config.gkeCluster')
    GKE_CLUSTER_NAME=$(echo $GKE_CLUSTER_FULL_NAME | awk -F/ '{print $6}')
    GKE_ZONE=$(echo $GKE_CLUSTER_FULL_NAME | awk -F/ '{print $4}')
  2. Create node pool for Kubernetes POD operations that requires large single machine :

    • Set pool parameters for Planet file:
    ADDT_SN_POOL_NUM_CORES=4
    ADDT_SN_POOL_DISK_SIZE=1200
    ADDT_SN_POOL_MAX_NUM_TREADS=$((ADDT_SN_POOL_NUM_CORES/2))
    

    or for History file:

    ADDT_SN_POOL_NUM_CORES=32
    ADDT_SN_POOL_DISK_SIZE=2000
    ADDT_SN_POOL_MAX_NUM_TREADS=$((ADDT_SN_POOL_NUM_CORES/4))
    
    • Set other parameters and create GKE Pool
    ADDT_SN_POOL_NAME=osm-addt-sn-pool
    ADDT_SN_POOL_MACHINE_TYPE=n1-highmem-$ADDITIONAL_POOL_NUM_CORES
    ADDITIONAL_POOL_NUM_NODES=1
    gcloud container node-pools create $ADDT_SN_POOL_NAME \
        --cluster $GKE_CLUSTER_NAME \
        --project $PROJECT_ID \
        --zone $GKE_ZONE \
        --machine-type $ADDT_SN_POOL_MACHINE_TYPE \
        --num-nodes $ADDT_SN_POOL_NUM_NODES \
        --disk-size $ADDT_SN_POOL_DISK_SIZE \
        --scopes gke-default,storage-rw,bigquery
    

Planet file GKE node pool for features POD

This GKE pool should be created only if you are working with a Planet file

  1. Create node pool for the osm_to_features operation:
    OSM_TO_FEATURES_POOL_NUM_CORES=32
    OSM_TO_FEATURES_POOL_NAME=osm-to-features-pool
    OSM_TO_FEATURES_POOL_MACHINE_TYPE=n1-highmem-$OSM_TO_FEATURES_POOL_NUM_CORES
    OSM_TO_FEATURES_POOL_NUM_NODES=2
    OSM_TO_FEATURES_POOL_DISK_SIZE=1200
    gcloud container node-pools create $OSM_TO_FEATURES_POOL_NAME \
        --cluster $GKE_CLUSTER_NAME \
        --project $PROJECT_ID \
        --zone $GKE_ZONE \
        --machine-type $OSM_TO_FEATURES_POOL_MACHINE_TYPE \
        --num-nodes $OSM_TO_FEATURES_POOL_NUM_NODES \
        --disk-size $OSM_TO_FEATURES_POOL_DISK_SIZE \
        --scopes gke-default,storage-rw
    
  2. Save value of requested memory for osm_to_features into variable:
    OSM_TO_FEATURES_POD_REQUESTED_MEMORY=$((OSM_TO_FEATURES_POOL_NUM_CORES*5))G
    

History file GKE node pool for features POD

This GKE pool should be created only if you are working with a History file

  1. Create node pool for Kubernetes POD operations that requires several small machines:
    ADDT_MN_POOL_NUM_CORES=8
    ADDT_MN_POOL_DISK_SIZE=2500
    ADDT_MN_POOL_NAME=osm-addt-mn-pool
    ADDT_MN_POOL_MACHINE_TYPE=n1-highmem-$ADDT_MN_POOL_NUM_CORES
    ADDT_MN_POOL_NUM_NODES=14
    gcloud container node-pools create $ADDT_MN_POOL_NAME \
        --cluster $GKE_CLUSTER_NAME \
        --project $PROJECT_ID \
        --zone $GKE_ZONE \
        --machine-type $ADDT_MN_POOL_MACHINE_TYPE \
        --num-nodes $ADDT_MN_POOL_NUM_NODES \
        --disk-size $ADDT_MN_POOL_DISK_SIZE \
        --scopes gke-default,storage-rw,bigquery
    
  2. Save value of requested memory for osm-addt-mn-pool pods operations:
    OSM_TO_FEATURES_POD_REQUESTED_MEMORY=$((OSM_TO_FEATURES_POOL_NUM_CORES*5))G
    

Set pipeline parameters into Composer env vars

  1. Fill deployment/config/config.json with the project's parameters using deployment/config/generate_config.py script:
    CONFIG_FILE=deployment/config/config.json
    python3 deployment/config/generate_config.py $CONFIG_FILE \
        --project_id=$PROJECT_ID \
        --osm_url=$OSM_URL \
        --osm_md5_url=$OSM_MD5_URL \
        --gcs_transfer_bucket=$TRANSFER_BUCKET_NAME \
        --gcs_work_bucket=$WORK_BUCKET_NAME \
        --transfer_index_files_gcs_uri=gs://$WORK_BUCKET_NAME/gsc_transfer_index/ \
        --osm_to_features_image=$OSM_TO_FEATURES_IMAGE \
        --osm_to_nodes_ways_relations_image=$OSM_TO_NODES_WAYS_RELATIONS_IMAGE \
        --generate_layers_image=$GENERATE_LAYERS_IMAGE \
        --osm_converter_with_history_index_image=$OSM_CONVERTER_WITH_HISTORY_INDEX_IMAGE \
        --osm_to_features_gke_pool=$OSM_TO_FEATURES_POOL_NAME \
        --osm_to_features_gke_pod_requested_memory=$OSM_TO_FEATURES_POD_REQUESTED_MEMORY \
        --addt_sn_gke_pool=$ADDT_SN_POOL_NAME \
        --addt_sn_gke_pool_max_num_treads=$ADDT_SN_POOL_MAX_NUM_TREADS \
        --addt_mn_gke_pool=$ADDT_MN_POOL_NAME \
        --addt_mn_gke_pool_num_nodes=$ADDT_MN_POOL_NUM_NODES \
        --addt_mn_pod_requested_memory=$ADDT_MN_POD_REQUESTED_MEMORY \
        --bq_dataset_to_export=$BQ_DATASET
    
  2. Set variables from deployment/config/config.json to Cloud Composer environment:
    deployment/config/set_env_vars_from_config.sh $CONFIG_FILE $COMPOSER_ENV_NAME $REGION_LOCATION   

Setup OSM_TO_BQ triggering

  1. Set your Composer Environment Client Id to COMPOSER_CLIENT_ID. You can use utils/get_client_id.py script to get your ID:
    COMPOSER_CLIENT_ID=$(python3 utils/get_client_id.py $PROJECT_ID $REGION_LOCATION $COMPOSER_ENV_NAME  2>&1 | tail -n1)
  2. Set your Airflow WebServer Id to COMPOSER_WEBSERVER_ID with the following this command:
    COMPOSER_WEBSERVER_ID=$(gcloud composer environments describe $COMPOSER_ENV_NAME \
        --location $REGION_LOCATION --format json | \
        jq -r '.config.airflowUri' | \
        awk -F/ '{print $3}' | \
        cut -d '.' -f1)
  3. Create a Cloud Function that will trigger osm-to-bq after source OSM file transfer:
  • Main DAG name for the Planet file mode:
    DAG_NAME=osm_to_big_query_planet
    
  • Main DAG name for History file mode:
    DAG_NAME=osm_to_big_query_history
    
    DAGS_PATH='dags/osm_to_big_query_history.py dags/transfer_src_file.py  dags/*/'
    ```bash
    TRIGGER_FUNCTION_NAME=trigger_osm_to_big_query_dg_gcf
    gcloud functions deploy $TRIGGER_FUNCTION_NAME \
        --source triggering/trigger_osm_to_big_query_dg_gcf \
        --entry-point trigger_dag \
        --runtime python37 \
        --trigger-resource $TRANSFER_BUCKET_NAME \
        --trigger-event google.storage.object.finalize \
        --set-env-vars COMPOSER_CLIENT_ID=$COMPOSER_CLIENT_ID,COMPOSER_WEBSERVER_ID=$COMPOSER_WEBSERVER_ID,DAG_NAME=$DAG_NAME
    

Uploading DAGs and running

  1. Upload DAG's and it's dependency files to the environment GCS:
  • Files list for the Planet file mode:
DAGS_PATH='dags/osm_to_big_query_planet.py dags/transfer_src_file.py  dags/*/'
  • Files list for the History file mode:
DAGS_PATH='dags/osm_to_big_query_history.py dags/transfer_src_file.py  dags/*/'
  • Upload files:
for DAG_ELEMENT in $DAGS_PATH; do
  deployment/upload_dags_files.sh $DAG_ELEMENT $COMPOSER_ENV_NAME $REGION_LOCATION
done  

After you upload all DAG files and it's dependencies, the pipeline will automatically start according to start_date and schedule_intervals parameters that are set in the DAG files.

Inspecting

Now you can move to the Airflow web interface to inspect details of running pipeline. To access the Airflow web interface from the Google Cloud Console:

  1. To view your existing Cloud Composer environments, open the Environments page.
  2. In the Airflow webserver column, click the new window icon for the environment whose Airflow web interface you want to view.
  3. Log in with the Google account that has the appropriate permissions.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 70.3%
  • Shell 27.2%
  • Dockerfile 1.4%
  • Perl 1.1%