The project is in a relatively stable state and in use for all code development at GRAIL and other organizations. Having said that, I am unable to give time to it at any regular cadence.
I rely on the community for maintenance and new feature implementations. If you are interested in being part of this project, please let me know and I can give you write access, so you can merge your changes directly.
If you feel like you have a better maintained fork or an alternative/derived implementation, please let me know and I can redirect people there.
– @siddharthab
Minimum bazel version: 4.0.0
To use this toolchain, include this section in your WORKSPACE:
http_archive(
name = "com_grail_bazel_toolchain",
sha256 = "4dd40bfc94817d8e84e8c9104cb3850a357c94147d26b47e0f6a5a30f8bb6590",
strip_prefix = "bazel-toolchain-0.6.2",
urls = ["https://github.com/grailbio/bazel-toolchain/archive/0.6.2.tar.gz"],
)
load("@com_grail_bazel_toolchain//toolchain:deps.bzl", "bazel_toolchain_dependencies")
bazel_toolchain_dependencies()
load("@com_grail_bazel_toolchain//toolchain:rules.bzl", "llvm_toolchain")
llvm_toolchain(
name = "llvm_toolchain",
llvm_version = "12.0.0",
)
load("@llvm_toolchain//:toolchains.bzl", "llvm_register_toolchains")
llvm_register_toolchains()
And add the following section to your .bazelrc file (not needed after this issue is closed):
build --incompatible_enable_cc_toolchain_resolution
The toolchain can automatically detect your OS and arch type, and use the right
pre-built binary distribution from llvm.org. The detection is currently
based on host OS and is not perfect, so some distributions, docker based
sandboxed builds, and remote execution builds will need toolchains configured
manually through the distribution
attribute. We expect the detection logic to
grow through community contributions. We welcome PRs! 😄
See in-code documentation in rules.bzl for available
attributes to llvm_toolchain
.
We currently offer limited customizability through attributes of the llvm_toolchain_* rules. You can send us a PR to add more configuration attributes.
A majority of the complexity of this project is to make it generic for multiple use cases. For one-off experiments with new architectures, cross-compilations, new compiler features, etc., my advice would be to look at the toolchain configurations generated by this repo, and copy-paste/edit to make your own in any package in your own workspace.
bazel query --output=build @llvm_toolchain//:all | grep -v -e '^#' -e '^ generator'
Besides defining your toolchain in your package BUILD file, and until this
issue is resolved, you would
also need a way for bazel to access the tools in LLVM distribution as relative
paths from your package without using ..
up-references. For this, you can
create a symlink that uses up-references to point to the LLVM distribution
directory, and also create a wrapper script for clang such that the actual
clang invocation is not through the symlinked path. See the files in the
@llvm_toolchain//:
package as a reference.
# See generated files for reference.
ls -lR "$(bazel info output_base)/external/llvm_toolchain"
# Create symlink to LLVM distribution.
cd _your_package_directory_
ln -s ../....../external/llvm_toolchain_llvm llvm
# Create CC wrapper script.
mkdir bin
cp "$(bazel info output_base)/external/llvm_toolchain/bin/cc_wrapper.sh" bin/cc_wrapper.sh
vim bin/cc_wrapper.sh # Review to ensure relative paths, etc. are good.
See bazel tutorial for how CC toolchains work in general.
If toolchains are registered (see Quickstart section above), you do not need to
do anything special for bazel to find the toolchain. You may want to check once
with the --toolchain_resolution_debug
flag to see which toolchains were
selected by bazel for your target platform.
For specifying unregistered toolchains on the command line, please use the
--extra_toolchains
flag. For example,
--extra_toolchains=@llvm_toolchain//:cc-toolchain-x86_64-linux
.
We no longer support the --crosstool_top=@llvm_toolchain//:toolchain
flag,
and instead rely on the --incompatible_enable_cc_toolchain_resolution
flag.
The LLVM toolchain archive is downloaded and extracted as a separate repository
with the suffix _llvm
. Alternatively, you can also specify your own
repositories for each host os-arch pair through the toolchain_roots
attribute. Each of these repositories is typically configured through
local_repository
or http_archive
(with build_file
attribute as
@com_grail_bazel_toolchain//toolchain:BUILD.llvm_repo
).
A sysroot can be specified through the sysroot
attribute. This can be either
a path on the user's system, or a bazel filegroup
like label. One way to
create a sysroot is to use docker export
to get a single archive of the
entire filesystem for the image you want. Another way is to use the build
scripts provided by the Chromium
project.
The toolchain supports cross-compilation if you bring your own sysroot. When cross-compiling, we link against the libstdc++ from the sysroot (single-platform build behavior is to link against libc++ bundled with LLVM). The following pairs have been tested to work for some hello-world binaries:
- {linux, x86_64} -> {linux, aarch64}
- {linux, aarch64} -> {linux, x86_64}
- {darwin, x86_64} -> {linux, x86_64}
- {darwin, x86_64} -> {linux, aarch64}
A recommended approach would be to define two toolchains, one without sysroot for single-platform builds, and one with sysroot for cross-compilation builds. Then, when cross-compiling, explicitly specify the toolchain with the sysroot and the target platform. For example, see the WORKSPACE file and the test script for cross-compilation.
bazel build \
--platforms=@com_grail_bazel_toolchain//platforms:linux-x86_64 \
--extra_toolchains=@llvm_toolchain_with_sysroot//:cc-toolchain-x86_64-linux \
//...
Sandboxing the toolchain introduces a significant overhead (100ms per action,
as of mid 2018). To overcome this, one can use
--experimental_sandbox_base=/dev/shm
. However, not all environments might
have enough shared memory available to load all the files in memory. If this is
a concern, you may set the attribute for using absolute paths, which will
substitute templated paths to the toolchain as absolute paths. When running
bazel actions, these paths will be available from inside the sandbox as part of
the / read-only mount. Note that this will make your builds non-hermetic.
The toolchain is tested to work with rules_go
, rules_rust
, and
rules_foreign_cc
.
The LLVM distribution also provides several tools like clang-format
. You can
depend on these tools directly in the bin directory of the distribution. When
using the auto-configured download (not using toolchain_roots
), the
distribution is available in the repo with the suffix _llvm
appended to the
name you used for the llvm_toolchain
rule. For example,
@llvm_toolchain_llvm//:bin/clang-format
is a valid and visible target in the
quickstart example above.
Other examples of toolchain configuration:
https://github.com/bazelbuild/bazel/wiki/Building-with-a-custom-toolchain