Skip to content

This is the PyTorch implementation of our paper: Unsupervised underwater shipwreck detection in side-scan sonar images based on domain-adaptive techniques

Notifications You must be signed in to change notification settings

firekeepers/DCBD

Repository files navigation

This is the PyTorch implementation of our paper: Unsupervised underwater shipwreck detection in side-scan sonar images based on domain-adaptive techniques

image

Methods on Cityscape to Foggy Cityscape Backbone density mAP(%)
Source(Faster R-CNN) Resnet-101 0.02 25.6
Adaptive Teacher(CVPR2022) Resnet-101 0.02 48.1
DCBD(ours) Resnet-101 0.02 52.6(+4.5)
Oracle Resnet-101 0.02 43.2
Methods on Optical to SSS Shipwreck Backbone mAP(%)
Source(Faster R-CNN) Resnet-101 21.07
CycleGAN(ICCV2017) Resnet-101 50.37
Adaptive Teacher(CVPR2022) Resnet-101 73.47
Adaptive Teacher + CycleGAN Resnet-101 89.20
DCBD(ours) Resnet-101 92.16
Oracle Resnet-101 94.26

make sure you have set your dataset in /home/shu3090/wcw/adapteacher/data/datasets/builtin.py

train:

python train.py --config ./configs/faster_rcnn_R101_cross_city_res_change.yaml --num-gpus 2

resume:

python train.py --config ./configs/faster_rcnn_R101_cross_city_res_change.yaml --resume --num-gpus 2

eval-only:

python train.py --config ./configs/faster_rcnn_R101_cross_city_res_change.yaml --resume --eval-only

test:

python train.py --config ./configs/faster_rcnn_R101_cross_city_res_change.yaml --resume --eval-only

train DCBD:

#the first stage:
#train DID 
python train_net.py --config ./configs/faster_rcnn_R101_cross_city_res_change.yaml --num-gpus 2
#train DRD
#1/Delete GRL module and IDCC module, retrain the detector
python train_net.py --config ./configs/faster_rcnn_R101_cross_city_res_change.yaml --num-gpus 2

#DCB:
#fusing precition from DID and DRD to train DAD, DS and DP means DID and DRD actually
python train_net_cb.py --config ./configs/faster_RCNN_city_cb.yaml --num-gpus 2 MODEL.WEIGHTS_DP="$your weight of DRD.pth$" MODEL.WEIGHTS_DS="$your weight of DID.pth$"

if you need a visualization demo for detection, We have implemented a simple demo using Gradio:

python visualization_demo.py --config ./configs/faster_rcnn_R101_cross_city_res_change.yaml

the dataset for optical to SSS task can be found at https://1drv.ms/f/c/02650644e5809154/ElSRgOVEBmUggAI3BwAAAAABGueJU3bLFGuZrcaFbeOgyQ?e=8bruXm

About

This is the PyTorch implementation of our paper: Unsupervised underwater shipwreck detection in side-scan sonar images based on domain-adaptive techniques

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages