Skip to content

v0.4.0

Compare
Choose a tag to compare
@felixdittrich92 felixdittrich92 released this 16 Aug 10:23
· 41 commits to main since this release

What's Changed

  • Sync with current docTR state
  • Hf hub integration

HuggingFace Hub integration

Now you can load and/or push models to the hub directly.

Loading

from onnxtr.io import DocumentFile
from onnxtr.models import ocr_predictor, from_hub

img = DocumentFile.from_images(['<image_path>'])
# Load your model from the hub
model = from_hub('onnxtr/my-model')

# Pass it to the predictor
# If your model is a recognition model:
predictor = ocr_predictor(
    det_arch='db_mobilenet_v3_large',
    reco_arch=model
)

# If your model is a detection model:
predictor = ocr_predictor(
    det_arch=model,
    reco_arch='crnn_mobilenet_v3_small'
)

# Get your predictions
res = predictor(img)

Push

from onnxtr.models import parseq, push_to_hf_hub, login_to_hub
from onnxtr.utils.vocabs import VOCABS

# Login to the hub
login_to_hub()

# Recogniton model
model = parseq("~/onnxtr-parseq-multilingual-v1.onnx", vocab=VOCABS["multilingual"])
push_to_hf_hub(
    model,
    model_name="onnxtr-parseq-multilingual-v1",
    task="recognition",  # The task for which the model is intended [detection, recognition, classification]
    arch="parseq",  # The name of the model architecture
    override=False  # Set to `True` if you want to override an existing model / repository
)

# Detection model
model = linknet_resnet18("~/onnxtr-linknet-resnet18.onnx")
push_to_hf_hub(
    model,
    model_name="onnxtr-linknet-resnet18",
    task="detection",
    arch="linknet_resnet18",
    override=True
)

HF Hub search: here.

Collection: here

Full Changelog: v0.3.2...v0.4.0