Skip to content

Commit

Permalink
Deploy v0.6.0 from a697116
Browse files Browse the repository at this point in the history
  • Loading branch information
github-actions[bot] committed Feb 7, 2024
1 parent 7d92ec5 commit f342689
Show file tree
Hide file tree
Showing 290 changed files with 46,349 additions and 1 deletion.
2 changes: 1 addition & 1 deletion latest
4 changes: 4 additions & 0 deletions v0.6.0/.buildinfo
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: 8d406fb63a1221c5bc7b5c2cda3edecd
tags: 645f666f9bcd5a90fca523b33c5a78b7
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Magnetic airborne survey of the Osborne Mine, Australia\n\nThis is a section of a survey acquired in 1990 by the Queensland\nGovernment, Australia. The line data have approximately 80 m terrain\nclearance and 200 m line spacing. The section contains\nthe total field magnetic anomalies associated with the Osborne Mine,\nLightning Creek sill complex, and the Brumby prospect.\n\n**Original source:**\n[Geophysical Acquisition & Processing Section 2019. MIM Data from Mt Isa\nInlier, QLD (P1029), magnetic line data, AWAGS levelled. Geoscience Australia,\nCanberra](http://pid.geoscience.gov.au/dataset/ga/142419)_\n\n**Pre-processing:** [Source code for preparation of the original dataset for\nredistribution in Ensaio](https://github.com/fatiando-data/osborne-magnetic)_\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import pandas as pd\nimport pygmt\n\nimport ensaio"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Download and cache the data and return the path to it on disk\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"fname = ensaio.fetch_osborne_magnetic(version=1)\nprint(fname)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Load the CSV formatted data with pandas\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"data = pd.read_csv(fname)\ndata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Make a PyGMT map with the data points colored by the total field magnetic\nanomaly.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"fig = pygmt.Figure()\nfig.basemap(\n projection=\"M15c\",\n region=[\n data.longitude.min(),\n data.longitude.max(),\n data.latitude.min(),\n data.latitude.max(),\n ],\n frame=\"af\",\n)\nscale = 1500\npygmt.makecpt(cmap=\"polar+h\", series=[-scale, scale], background=True)\nfig.plot(\n x=data.longitude,\n y=data.latitude,\n fill=data.total_field_anomaly_nt,\n style=\"c0.075c\",\n cmap=True,\n)\nfig.colorbar(\n frame='af+l\"total field magnetic anomaly [nT]\"',\n position=\"JBC+h+o0/1c+e\",\n)\nfig.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The anomaly at the bottom left is the Osborne Mine. The ones on the top right\nare the Lightning Creek sill complex (the largest) and the Brumby prospect\n(one of the smaller anomalies).\n\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
# Copyright (c) 2021 The Ensaio Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
#
# This code is part of the Fatiando a Terra project (https://www.fatiando.org)
#
"""
GPS velocities (3-component) for the Alps
-----------------------------------------
This is a compilation of 3D GPS velocities for the Alps. The horizontal
velocities are reference to the Eurasian frame. All velocity components and
even the position have error estimates, which is very useful and rare to find
in a lot of datasets.
**Original source:**
`Sánchez et al. (2018) <https://doi.org/10.1594/PANGAEA.886889>`__
**Pre-processing:** `Source code for preparation of the original dataset for
redistribution in Ensaio
<https://github.com/fatiando-data/alps-gps-velocity>`__
"""
import numpy as np
import pandas as pd
import pygmt

import ensaio

###############################################################################
# Download and cache the data and return the path to it on disk
fname = ensaio.fetch_alps_gps(version=1)
print(fname)

###############################################################################
# Load the CSV formatted data with pandas
data = pd.read_csv(fname)
data

###############################################################################
# To plot the vectors with PyGMT, we need to convert the horizontal components
# into angle (azimuth) and length.
angle = np.degrees(np.arctan2(data.velocity_north_mmyr, data.velocity_east_mmyr))
length = np.hypot(data.velocity_north_mmyr, data.velocity_east_mmyr)

###############################################################################
# Now we can make a PyGMT map with the horizontal velocity vectors and vertical
# velocities encoded as colored points.

# West, East, South, North boundaries of the map
region = [-5, 20, 40, 55]

fig = pygmt.Figure()
with fig.subplot(
nrows=1,
ncols=2,
figsize=("35c", "15c"),
sharey="l", # shared y-axis on the left side
frame="WSrt",
):
with fig.set_panel(0):
fig.basemap(region=region, projection="M?", frame="af")
fig.coast(area_thresh=1e4, land="#eeeeee")
scale_factor = 2 / length.max()
fig.plot(
x=data.longitude,
y=data.latitude,
direction=[angle, length * scale_factor],
style="v0.15c+e",
fill="blue",
pen="1p,blue",
)
# Plot a quiver caption
fig.plot(
x=-4,
y=42,
direction=[[0], [1 * scale_factor]],
style="v0.15c+e",
fill="blue",
pen="1p,blue",
)
fig.text(
x=-4,
y=42.2,
text="1 mm/yr",
justify="BL",
font="10p,Helvetica,blue",
)
with fig.set_panel(1):
fig.basemap(region=region, projection="M?", frame="af")
fig.coast(area_thresh=1e4, land="#eeeeee")
pygmt.makecpt(
cmap="polar",
series=[data.velocity_up_mmyr.min(), data.velocity_up_mmyr.max()],
)
fig.plot(
x=data.longitude,
y=data.latitude,
fill=data.velocity_up_mmyr,
style="c0.2c",
cmap=True,
pen="0.5p,black",
)
fig.colorbar(
frame='af+l"vertical velocity [mm/yr]"',
position="jTL+w7c/0.3c+h+o1/1",
)
fig.show()
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
# Copyright (c) 2021 The Ensaio Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
#
# This code is part of the Fatiando a Terra project (https://www.fatiando.org)
#
"""
Magnetic airborne survey of the Osborne Mine, Australia
-------------------------------------------------------
This is a section of a survey acquired in 1990 by the Queensland
Government, Australia. The line data have approximately 80 m terrain
clearance and 200 m line spacing. The section contains
the total field magnetic anomalies associated with the Osborne Mine,
Lightning Creek sill complex, and the Brumby prospect.
**Original source:**
`Geophysical Acquisition & Processing Section 2019. MIM Data from Mt Isa
Inlier, QLD (P1029), magnetic line data, AWAGS levelled. Geoscience Australia,
Canberra <http://pid.geoscience.gov.au/dataset/ga/142419>`__
**Pre-processing:** `Source code for preparation of the original dataset for
redistribution in Ensaio <https://github.com/fatiando-data/osborne-magnetic>`__
"""
import pandas as pd
import pygmt

import ensaio

###############################################################################
# Download and cache the data and return the path to it on disk
fname = ensaio.fetch_osborne_magnetic(version=1)
print(fname)

###############################################################################
# Load the CSV formatted data with pandas
data = pd.read_csv(fname)
data

###############################################################################
# Make a PyGMT map with the data points colored by the total field magnetic
# anomaly.
fig = pygmt.Figure()
fig.basemap(
projection="M15c",
region=[
data.longitude.min(),
data.longitude.max(),
data.latitude.min(),
data.latitude.max(),
],
frame="af",
)
scale = 1500
pygmt.makecpt(cmap="polar+h", series=[-scale, scale], background=True)
fig.plot(
x=data.longitude,
y=data.latitude,
fill=data.total_field_anomaly_nt,
style="c0.075c",
cmap=True,
)
fig.colorbar(
frame='af+l"total field magnetic anomaly [nT]"',
position="JBC+h+o0/1c+e",
)
fig.show()

###############################################################################
# The anomaly at the bottom left is the Osborne Mine. The ones on the top right
# are the Lightning Creek sill complex (the largest) and the Brumby prospect
# (one of the smaller anomalies).
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Earth gravity grid at 10 arc-minute resolution\n\nThe grid is grid-node registered and stored in netCDF with CF-compliant\nmetadata. The gravity values are derived from the EIGEN-6C4 spherical harmonic\nmodel. Here \"gravity\" refers to the combined gravitational and centrifugal\naccelerations.\n\nThe data are calculated uniformly at 10 km above the WGS84 ellipsoid.\n\n**Original source:** [EIGEN-6C4 model](https://doi.org/10.5880/icgem.2015.1)_\n\n**Pre-processing:** [Source code for preparation of the original dataset for\nredistribution in Ensaio](https://github.com/fatiando-data/earth-gravity-10arcmin)_\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import pygmt\nimport xarray as xr\n\nimport ensaio"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Download and cache the data and return the path to it on disk.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"fname = ensaio.fetch_earth_gravity(version=1)\nprint(fname)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Load the netCDF grid with xarray.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"data = xr.load_dataarray(fname)\ndata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Make a PyGMT pseudo-color map of the grid in a Mollweide projection.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"fig = pygmt.Figure()\nfig.basemap(\n region=\"g\",\n projection=\"W15c\",\n frame=True,\n)\nfig.grdimage(data, cmap=\"viridis\", shading=\"+nt0.5\")\nfig.colorbar(frame='af+l\"gravity [mGal]\"')\nfig.coast(shorelines=True, resolution=\"c\", area_thresh=1e4)\nfig.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Loading

0 comments on commit f342689

Please sign in to comment.