Skip to content

fabiansinz/UniverSVM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

UniverSVM

Fast transductive and universum support vector machine.

Code can also be obtained from: http://mloss.org/software/view/19/

To quickly test the USVM use the accompanying dockerfile. Assuming docker is installed, use docker build --tag usvm . followed by docker run -it usvm. Inside the container use ./universvm -V 0 -o 0 -c 10 -t 0 -T data/test.dat -D output.dat data/train.dat. That shuld give about 95% accurary.

For further information see:

  1. Weston, J., Collobert, R., Sinz, F., Bottou, L., Vapnik, V.: Inference with the Universum. Proceedings of the 23rd international conference on Machine learning ICML 06. pp. 1009–1016. ACM Press (2006).
  2. Collobert, R., Sinz, F., Weston, J., Bottou, L.: Trading Convexity for Scalability. In: Bottou, L., Chapelle, O., Decoste, D., and Weston, J. (eds.) Proceedings of the 23rd international conference on Machine learning ICML 06. ACM Press (2006).
  3. Collobert, R., Sinz, F., Weston, J., Bottou, L.: Large scale transductive SVMs. J. Mach. Learn. Res. 7, 1687–1712 (2006).
  4. Sinz, F.H., Chapelle, O., Agarwal, A., Schölkopf, B.: An Analysis of Inference with the Universum. In: Platt, J.C., Koller, D., Singer, Y., and Roweis, S. (eds.) Advances in Neural Information Processing Systems 20: 21st Annual Conference on Neural Information Processing Systems 2007. pp. 1369–1376. Curran, Red Hook, NY, USA (2008).

About

Fast transductive and universum support vector machine

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published