Skip to content

Commit

Permalink
update of figure labels
Browse files Browse the repository at this point in the history
  • Loading branch information
rainer-rq-koelle committed May 7, 2024
1 parent 382189b commit f1e2cec
Show file tree
Hide file tree
Showing 71 changed files with 29 additions and 16,106 deletions.
37 changes: 22 additions & 15 deletions 03-traffic_characterisation.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -259,16 +259,16 @@ tmp_annual_share <- annual_tfc_bra |> mutate(YEAR = as.factor(YEAR)) |>
#append airport names
study_apt_lvl <- study_apt_lvl |>
left_join(bra_apts_names, by = join_by(ICAO))
p_study1 <- study_apt_lvl |>
mutate(
left_join(bra_apts_names, by = join_by(ICAO)) |>
mutate(
NAME = case_match(NAME
, "Belo Horizonte" ~ "B.Horizonte"
, "Rio Dumont" ~ "R.Dumont"
, "Porto Alegre" ~ "P.Alegre"
, .default = NAME)
) |>
)
p_study1 <- study_apt_lvl |>
filter(!(YEAR == "2023")) |>
ggplot() +
geom_col(aes(x = NAME, y = TOT_FLTS_YEAR, fill = YEAR)
Expand All @@ -289,16 +289,19 @@ study_apt_lvl <- study_apt_lvl |>
# labs(x = NULL, y = NULL,)
#
# p_study1 / p_study2
```
```{r}
```

```{r}
#| label: fig-bra-apt-tfc
#| fig.cap: Brazilian airport level traffic
#|
(p_share_of_network(tmp_annual_share) +
scale_x_discrete(guide = guide_axis(n.dodge = 2))
) + p_study1 +
plot_layout(widths = c(1, 4)) +
plot_annotation("Brazil Study Airports Annual Movements")
plot_layout(widths = c(1, 4))
#+
# plot_annotation("Brazil Study Airports Annual Movements")
```

```{r}
Expand Down Expand Up @@ -377,8 +380,11 @@ p1_eur <- annual_tfc_apt |> ggplot() +
(p_share_of_network(tmp) +
scale_x_discrete(guide = guide_axis(n.dodge = 2))
) + p1_eur +
plot_layout(widths = c(1, 4)) +
plot_annotation("European Study Airports Annual Movements")
plot_layout(widths = c(1, 4))
# remove title of joint plot - info in caption
#+
# plot_annotation("European Study Airports Annual Movements")
```

```{=html}
Expand Down Expand Up @@ -568,7 +574,7 @@ peak_day_comb <- bind_rows(peak_day_bra, peak_day_eur)

```{r}
#| label: fig-peak-day
#| fig-cap: Airport peak daily traffic
#| fig-cap: Airport peak daily traffic (2023)
plot_peak_day_tfc <- function(.df, .year, ...){
viz <- ggplot( data = .df %>% filter(YEAR == .year)
Expand All @@ -584,7 +590,8 @@ plot_peak_day_tfc <- function(.df, .year, ...){
scale_fill_manual(values = bra_eur_colours) +
facet_grid(RWY ~., as.table = FALSE, switch = "y", scales = "free", space = "free") +
# my_own_theme_bw +
labs(x = paste0("peak day traffic (", .year,")"), y = NULL, fill = "Region") +
labs(# x = paste0("peak day traffic (", .year,")") , # blank out xlabel == caption
y = NULL, fill = "Region") +
theme(legend.position = c(0.9, 0.15)
,axis.ticks = element_blank()
)
Expand Down Expand Up @@ -766,7 +773,7 @@ fm_apts_eur <- tfc_apts_eur |> fleet_mix_from_counts("EUR")
```{r}
#| label: fig-fleet-mix
#| fig-cap: Fleet mix observed at the study airports in 2023
#| fig-height: 7
#| fig-height: 5
key_year <- 2022
fm_apts <- bind_rows(fm_apts_bra, fm_apts_eur) |>
Expand Down
16 changes: 7 additions & 9 deletions 04-predictability.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -168,11 +168,9 @@ Evolution of arrival punctuality at study airports (2019 vs 2023)

:::


```{r}
#| label: fig-evolution-ARR-punc
#| fig-caption: Evolution of arrival punctuality window
#| fig-cap: Evolution of arrival punctuality window
tmp <- punc_bra |> bind_rows(punc_eur) |> filter(PHASE == "ARR")
Expand Down Expand Up @@ -228,8 +226,6 @@ tmp2 |>
theme(legend.position = "none")
```



On average, the share of flights arriving within -/+ 15 minutes of their scheduled time varies wider amongst the European study airports (c.f @fig-evolution-ARR-punc).
The observed punctuality (and associated predictability) within the Brazilian system shows a more homogenuous pattern with a general trend towards 60% or more over the past two years.

Expand Down Expand Up @@ -330,14 +326,14 @@ p2023 <- p3_bra_earlylate + p3_eur_earlylate

```{r}
#| label: fig-early-vs-late-arrivals
#| fig-cap: Change of share of early and late arrivals (2019 vs 2022)
#| fig-cap: Change of share of early and late arrivals (2019 vs 2023)
#| fig-height: 6
(p2019 / p2022 / p2023) + plot_layout(guides = "collect") &
(p2019 / p2023) + plot_layout(guides = "collect") &
theme(legend.position = 'top')
```

@fig-early-vs-late-arrivals compares the share of early and late arrivals at each study airport in 2019 and 2022.
@fig-early-vs-late-arrivals compares the share of early and late arrivals at each study airport in 2019 and 2023.
From a high-level perspective, air traffic tends to arrive well ahead of schedule in Brazil, while Europe observes a higher share of delayed arrivals.
Guarulhos (SBGR) remained the Brazilian airport with the highest share of early flights in 2022 (i.e. 33%), followed by Campinas (SBKP) with 30%.
Both airports are essential hubs in the country, and anticipation can be a consequence sought by air operators for better accommodation of the flight network.
Expand Down Expand Up @@ -482,7 +478,7 @@ lbl_df <- tmp2 |>

```{r}
#| label: fig-evolution-DEP-punc
#| fig-caption: Evolution of arrival punctuality window
#| fig-cap: Evolution of arrival punctuality window
tmp2 |> select(REGION, APT, YEAR, PHASE, WITHIN_M15P15, COL_SORT ) |>
ggplot() +
Expand Down Expand Up @@ -575,6 +571,8 @@ p2023 <- p3_bra_earlylate + p3_eur_earlylate
```{r}
#| label: fig-early-vs-late-departures
#| fig-cap: Change of share of early and late departures (2019 vs 2023)
#| fig-height: 6
(p2019 / p2023) + plot_layout(guides = "collect") &
theme(legend.position = 'top')
```
Expand Down
Empty file removed docs/.nojekyll
Empty file.
Loading

0 comments on commit f1e2cec

Please sign in to comment.