Skip to content

Commit

Permalink
MeanEncoderTransform generates wrong values (#492)
Browse files Browse the repository at this point in the history
* fix MeanEncoder

* update changelog

* fix

* fix

* fix

* restore rnn file

* fix numba method

* add comments

* add comment for fixtures

* add blank lines for more readability

* fix spelling

* combine two tests in one

* add test for 2 segments

---------

Co-authored-by: Egor Baturin <[email protected]>
  • Loading branch information
egoriyaa and Egor Baturin authored Nov 6, 2024
1 parent 6cd66ae commit 4a6e975
Show file tree
Hide file tree
Showing 3 changed files with 199 additions and 16 deletions.
2 changes: 1 addition & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- Disallow dropping target in `TSDataset.drop_features` ([#491](https://github.com/etna-team/etna/pull/491))
- Optimize memory usage in `TFTNativeModel` by eliminating copying during making samples ([#494](https://github.com/etna-team/etna/pull/494))
- Optimize memory usage in `DeepStateModel` and `DeepARNativeModel` by eliminating copying during making samples ([#499](https://github.com/etna-team/etna/pull/499))
-
- Fix working with NaN target in `MeanEncoderTransform` ([#492](https://github.com/etna-team/etna/pull/492))
-
-
-
Expand Down
66 changes: 57 additions & 9 deletions etna/transforms/encoders/mean_encoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,11 @@
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
from typing import cast

import numba
import numpy as np
import pandas as pd
from bottleneck import nanmean
Expand Down Expand Up @@ -165,6 +167,39 @@ def _count_macro_running_mean(df, n_segments):
expanding_mean = pd.Series(index=df.index, data=expanding_mean.values).shift(n_segments)
return expanding_mean

@staticmethod
@numba.njit()
def _count_per_segment_cumstats(target: np.ndarray, categories: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
ans_cumsum = np.full_like(target, np.nan)
ans_cumcount = np.full_like(target, np.nan)
unique_categories = np.unique(categories)
for category in unique_categories:
idx = np.where(category == categories)[0]
t = target[idx]

# Mask for valid (non-NaN) target values
valid = ~np.isnan(t)

# Compute cumulative sums and counts for valid values
cumsum = np.cumsum(np.where(valid, t, 0))
cumcount = np.cumsum(valid).astype(np.float32)

# Shift statistics by 1 to get statistics not including current index
cumsum = np.roll(cumsum, 1)
cumcount = np.roll(cumcount, 1)

cumsum[0] = np.NaN
cumcount[0] = np.NaN

# Handle positions with no previous valid values
cumsum[cumcount == 0] = np.NaN
cumcount[cumcount == 0] = np.NaN

# Assign the computed values back to the answer arrays
ans_cumsum[idx] = cumsum
ans_cumcount[idx] = cumcount
return ans_cumsum, ans_cumcount

def _transform(self, df: pd.DataFrame) -> pd.DataFrame:
"""
Get encoded values for the segment.
Expand Down Expand Up @@ -211,20 +246,24 @@ def _transform(self, df: pd.DataFrame) -> pd.DataFrame:
for segment in segments:
segment_df = TSDataset.to_flatten(intersected_df.loc[:, self.idx[segment, :]])
y = segment_df["target"]
categories = segment_df[self.in_column].values.astype(str)

unique_categories = np.unique(categories)
cat_to_int = {cat: idx for idx, cat in enumerate(unique_categories)}
int_categories = np.array([cat_to_int[cat] for cat in categories], dtype=np.int64)

# first timestamp is NaN
expanding_mean = y.expanding().mean().shift()
# cumcount not including current timestamp
cumcount = y.groupby(segment_df[self.in_column].astype(str)).agg("cumcount")
# cumsum not including current timestamp
cumsum = (
y.groupby(segment_df[self.in_column].astype(str))
.transform(lambda x: x.shift().cumsum())
.fillna(0)
)

cumsum, cumcount = self._count_per_segment_cumstats(y.values, int_categories)
cumsum = pd.Series(cumsum)
cumcount = pd.Series(cumcount)

feature = (cumsum + expanding_mean * self.smoothing) / (cumcount + self.smoothing)
if self.handle_missing is MissingMode.global_mean:
nan_feature_index = segment_df[segment_df[self.in_column].isnull()].index
feature.loc[nan_feature_index] = expanding_mean.loc[nan_feature_index]

intersected_df.loc[:, self.idx[segment, self.out_column]] = feature.values

else:
Expand All @@ -237,25 +276,34 @@ def _transform(self, df: pd.DataFrame) -> pd.DataFrame:
timestamps = intersected_df.index
categories = pd.unique(df.loc[:, self.idx[:, self.in_column]].values.ravel())

cumstats = pd.DataFrame(data={"sum": 0, "count": 0, self.in_column: categories})
cumstats = pd.DataFrame(data={"sum": np.NaN, "count": np.NaN, self.in_column: categories})
cur_timestamp_idx = np.arange(0, len(timestamps) * n_segments, len(timestamps))
for _ in range(len(timestamps)):
timestamp_df = flatten.loc[cur_timestamp_idx]

# statistics from previous timestamp
cumsum_dict = dict(cumstats[[self.in_column, "sum"]].values)
cumcount_dict = dict(cumstats[[self.in_column, "count"]].values)

# map categories for current timestamp to statistics
temp.loc[cur_timestamp_idx, "cumsum"] = timestamp_df[self.in_column].map(cumsum_dict)
temp.loc[cur_timestamp_idx, "cumcount"] = timestamp_df[self.in_column].map(cumcount_dict)

# count statistics for current timestamp
stats = (
timestamp_df["target"]
.groupby(timestamp_df[self.in_column], dropna=False)
.agg(["count", "sum"])
.reset_index()
)
# statistics become zeros for categories with target=NaN
stats = stats.replace({"count": 0, "sum": 0}, np.NaN)

# sum current and previous statistics
cumstats = pd.concat([cumstats, stats]).groupby(self.in_column, as_index=False, dropna=False).sum()
# zeros appear for categories that weren't updated in previous line and whose statistics were NaN
cumstats = cumstats.replace({"count": 0, "sum": 0}, np.NaN)

cur_timestamp_idx += 1

feature = (temp["cumsum"] + running_mean * self.smoothing) / (temp["cumcount"] + self.smoothing)
Expand Down
147 changes: 141 additions & 6 deletions tests/test_transforms/test_encoders/test_mean_encoder_transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ def category_ts() -> TSDataset:
def expected_micro_category_ts() -> TSDataset:
df = generate_ar_df(start_time="2001-01-01", periods=6, n_segments=2)
df.rename(columns={"target": "mean_encoded_regressor"}, inplace=True)
df["mean_encoded_regressor"] = [np.NaN, 1, 1.5, 1.5, 2.75, 2.25] + [np.NaN, 6.0, 6.25, 7, 7.625, 8.0]
df["mean_encoded_regressor"] = [np.NaN, np.NaN, np.NaN, 1.5, 2.75, 2.25] + [np.NaN, np.NaN, 6.25, 7, 7.625, np.NaN]

ts = TSDataset(df, freq="D")
return ts
Expand All @@ -41,7 +41,7 @@ def expected_micro_category_ts() -> TSDataset:
def expected_micro_global_mean_ts() -> TSDataset:
df = generate_ar_df(start_time="2001-01-01", periods=6, n_segments=2)
df.rename(columns={"target": "mean_encoded_regressor"}, inplace=True)
df["mean_encoded_regressor"] = [np.NaN, 1, 1.5, 1.5, 2.5, 2.25] + [np.NaN, 6.0, 6.25, 7, 7.625, 8.0]
df["mean_encoded_regressor"] = [np.NaN, np.NaN, 1.5, 1.5, 2.5, 2.25] + [np.NaN, np.NaN, 6.25, 7, 7.625, 8.0]

ts = TSDataset(df, freq="D")
return ts
Expand All @@ -61,7 +61,7 @@ def expected_micro_category_make_future_ts() -> TSDataset:
def expected_macro_category_ts() -> TSDataset:
df = generate_ar_df(start_time="2001-01-01", periods=6, n_segments=2)
df.rename(columns={"target": "mean_encoded_regressor"}, inplace=True)
df["mean_encoded_regressor"] = [np.NaN, 3.5, 4, 4.875, 4, 4.85] + [np.NaN, 3.5, 3.66, 4.875, 5.5, 4.275]
df["mean_encoded_regressor"] = [np.NaN, np.NaN, np.NaN, 4.875, 4, 4.851] + [np.NaN, np.NaN, 3.66, 4.875, 5.5, 4.27]

ts = TSDataset(df, freq="D")
return ts
Expand All @@ -71,7 +71,7 @@ def expected_macro_category_ts() -> TSDataset:
def expected_macro_global_mean_ts() -> TSDataset:
df = generate_ar_df(start_time="2001-01-01", periods=6, n_segments=2)
df.rename(columns={"target": "mean_encoded_regressor"}, inplace=True)
df["mean_encoded_regressor"] = [np.NaN, 3.5, 4, 4.875, 5, 4.85] + [np.NaN, 3.5, 3.66, 4.875, 5.5, 5.55]
df["mean_encoded_regressor"] = [np.NaN, np.NaN, 4, 4.875, 5, 4.85] + [np.NaN, np.NaN, 3.66, 4.875, 5.5, 5.55]

ts = TSDataset(df, freq="D")
return ts
Expand Down Expand Up @@ -104,7 +104,7 @@ def ts_begin_nan() -> TSDataset:
def expected_ts_begin_nan_smooth_1() -> TSDataset:
df = generate_ar_df(start_time="2001-01-01", periods=6, n_segments=1)
df.rename(columns={"target": "mean_encoded_regressor"}, inplace=True)
df["mean_encoded_regressor"] = [np.NaN, np.NaN, 0.5, 1.16, 1.5, 2.5]
df["mean_encoded_regressor"] = [np.NaN, np.NaN, np.NaN, 1.75, 1.5, 2.5]

ts = TSDataset(df, freq="D")
return ts
Expand All @@ -114,12 +114,97 @@ def expected_ts_begin_nan_smooth_1() -> TSDataset:
def expected_ts_begin_nan_smooth_2() -> TSDataset:
df = generate_ar_df(start_time="2001-01-01", periods=6, n_segments=1)
df.rename(columns={"target": "mean_encoded_regressor"}, inplace=True)
df["mean_encoded_regressor"] = [np.NaN, np.NaN, 2 / 3, 5 / 4, 5 / 3, 2.5]
df["mean_encoded_regressor"] = [np.NaN, np.NaN, np.NaN, 5 / 3, 5 / 3, 2.5]

ts = TSDataset(df, freq="D")
return ts


@pytest.fixture
def multiple_nan_target_category_ts() -> TSDataset:
"""Fixture with segment having multiple NaN targets:
* For `regressor="A"` set of NaN timestamp goes before first notna value
* For `regressor="B"` set of NaN timestamp goes after first notna value
"""
df = generate_ar_df(n_segments=1, start_time="2001-01-01", periods=8)
df["target"] = [np.nan, 1.5, np.nan, 3.0, 4.0, np.NaN, np.NaN, np.NaN]

df_exog = generate_ar_df(n_segments=1, start_time="2001-01-01", periods=9)
df_exog.rename(columns={"target": "regressor"}, inplace=True)
df_exog["regressor"] = ["A", "B", "A", "A", "B", "B", "B", "A", "A"]

ts = TSDataset(df=df, df_exog=df_exog, freq="D", known_future="all")

return ts


@pytest.fixture
def expected_multiple_nan_target_category_ts() -> TSDataset:
df = generate_ar_df(n_segments=1, start_time="2001-01-01", periods=8)
df.rename(columns={"target": "regressor_mean"}, inplace=True)
df["regressor_mean"] = [np.NaN, np.NaN, np.NaN, np.NaN, 1.5, 2.75, 2.75, 3.0]

ts = TSDataset(df=df, freq="D")

return ts


@pytest.fixture
def mean_segment_encoder_ts() -> TSDataset:
df = generate_ar_df(n_segments=1, start_time="2001-01-01", periods=5)
df["target"] = [0, 1, np.NaN, 3, 4]

df_exog = generate_ar_df(n_segments=1, start_time="2001-01-01", periods=10)
df_exog.rename(columns={"target": "segment_feature"}, inplace=True)
df_exog["segment_feature"] = "segment_0"

ts = TSDataset(df=df, df_exog=df_exog, freq="D", known_future="all")

return ts


@pytest.fixture
def expected_mean_segment_encoder_ts() -> TSDataset:
df = generate_ar_df(n_segments=1, start_time="2001-01-01", periods=5)
df.rename(columns={"target": "segment_mean"}, inplace=True)
df["segment_mean"] = [np.NaN, 0, 0.5, 0.5, 1.33]

ts = TSDataset(df=df, freq="D")

return ts


@pytest.fixture
def multiple_nan_target_two_segments_ts() -> TSDataset:
"""Fixture with two segments having multiple NaN targets:
* For `regressor="A"` set of NaN timestamp goes before first notna value
* For `regressor="B"` set of NaN timestamp goes after first notna value
"""
df = generate_ar_df(start_time="2001-01-01", periods=6, n_segments=2)
df["target"] = [np.NaN, 2, np.NaN, 4, np.NaN, 5] + [np.NaN, 7, np.NaN, np.NaN, 10, 11]

df_exog = generate_ar_df(start_time="2001-01-01", periods=7, n_segments=2)
df_exog.rename(columns={"target": "regressor"}, inplace=True)
df_exog["regressor"] = ["A", "B", "A", "A", "B", "B", "A"] + ["A", "B", "A", "B", "A", "B", "A"]

ts = TSDataset(df, df_exog=df_exog, freq="D", known_future="all")

return ts


@pytest.fixture
def expected_multiple_nan_target_two_segments_ts() -> TSDataset:
df = generate_ar_df(start_time="2001-01-01", periods=6, n_segments=2)
df.rename(columns={"target": "regressor_mean"}, inplace=True)
df["regressor_mean"] = [np.NaN, np.NaN, np.NaN, np.NaN, 4.5, 4.5] + [np.NaN, np.NaN, np.NaN, 4.5, 4, 4.5]

ts = TSDataset(df=df, freq="D")

return ts


@pytest.mark.smoke
@pytest.mark.parametrize("mode", ["per-segment", "macro"])
@pytest.mark.parametrize("handle_missing", ["category", "global_mean"])
Expand Down Expand Up @@ -311,6 +396,56 @@ def test_ts_begin_nan_smooth_2(ts_begin_nan, expected_ts_begin_nan_smooth_2):
)


def test_mean_segment_encoder(mean_segment_encoder_ts, expected_mean_segment_encoder_ts):
mean_encoder = MeanEncoderTransform(
in_column="segment_feature",
mode="per-segment",
handle_missing="category",
smoothing=0,
out_column="segment_mean",
)
mean_encoder.fit_transform(mean_segment_encoder_ts)
assert_frame_equal(
mean_segment_encoder_ts.df.loc[:, pd.IndexSlice[:, "segment_mean"]],
expected_mean_segment_encoder_ts.df,
atol=0.01,
)


def test_multiple_nan_target_category_ts(multiple_nan_target_category_ts, expected_multiple_nan_target_category_ts):
mean_encoder = MeanEncoderTransform(
in_column="regressor",
mode="per-segment",
handle_missing="category",
smoothing=0,
out_column="regressor_mean",
)
mean_encoder.fit_transform(multiple_nan_target_category_ts)
assert_frame_equal(
multiple_nan_target_category_ts.df.loc[:, pd.IndexSlice[:, "regressor_mean"]],
expected_multiple_nan_target_category_ts.df,
atol=0.01,
)


def test_multiple_nan_target_two_segments_ts(
multiple_nan_target_two_segments_ts, expected_multiple_nan_target_two_segments_ts
):
mean_encoder = MeanEncoderTransform(
in_column="regressor",
mode="macro",
handle_missing="category",
smoothing=0,
out_column="regressor_mean",
)
mean_encoder.fit_transform(multiple_nan_target_two_segments_ts)
assert_frame_equal(
multiple_nan_target_two_segments_ts.df.loc[:, pd.IndexSlice[:, "regressor_mean"]],
expected_multiple_nan_target_two_segments_ts.df,
atol=0.01,
)


def test_save_load(category_ts):
mean_encoder = MeanEncoderTransform(in_column="regressor", out_column="mean_encoded_regressor")
assert_transformation_equals_loaded_original(transform=mean_encoder, ts=category_ts)
Expand Down

0 comments on commit 4a6e975

Please sign in to comment.