-
Notifications
You must be signed in to change notification settings - Fork 27
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
dbdb764
commit 7f95b86
Showing
11 changed files
with
1,109 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
type ModelType = | ||
| 'gpt2' | ||
| 'gpt2-medium' | ||
| 'gpt2-large' | ||
| 'gpt2-xl' | ||
| 'gpt-mini' | ||
| 'gpt-micro' | ||
| 'gpt-nano' | ||
|
||
interface ModelSize { | ||
nLayer?: number | ||
nHead?: number | ||
nEmbd?: number | ||
} | ||
|
||
export interface GPTConfig { | ||
lr: number | ||
batchSize: number | ||
blockSize: number | ||
vocabSize: number | ||
evaluate?: boolean | ||
maxEvalBatches?: number | ||
evaluateEvery?: number | ||
epochs?: number | ||
maxIter?: number | ||
weightDecay?: number | ||
verbose?: 0 | 1 | ||
bias?: boolean | ||
debug?: boolean | ||
dropout?: number | ||
residDrop?: number | ||
embdDrop?: number | ||
tokEmb?: boolean | ||
lmHead?: boolean | ||
modelType: ModelType | ||
} | ||
|
||
export const DEFAULT_CONFIG: Required<GPTConfig> = { | ||
lr: 0.001, | ||
weightDecay: 0, | ||
batchSize: 2, | ||
epochs: 9999, | ||
maxIter: 10_000, | ||
verbose: 0, | ||
modelType: 'gpt-nano', | ||
evaluate: true, | ||
maxEvalBatches: 12, | ||
evaluateEvery: 100, | ||
blockSize: 128, | ||
vocabSize: 50258, | ||
bias: true, | ||
debug: false, | ||
dropout: 0.2, | ||
residDrop: 0.2, | ||
embdDrop: 0.2, | ||
tokEmb: true, | ||
lmHead: true | ||
} | ||
|
||
export function getModelSizes (modelType: ModelType): Required<ModelSize> { | ||
switch (modelType) { | ||
case 'gpt2': | ||
return { nLayer: 12, nHead: 12, nEmbd: 768 } | ||
case 'gpt2-medium': | ||
return { nLayer: 24, nHead: 16, nEmbd: 1024 } | ||
case 'gpt2-large': | ||
return { nLayer: 36, nHead: 20, nEmbd: 1280 } | ||
case 'gpt2-xl': | ||
return { nLayer: 48, nHead: 25, nEmbd: 1600 } | ||
case 'gpt-mini': | ||
return { nLayer: 6, nHead: 6, nEmbd: 192 } | ||
case 'gpt-micro': | ||
return { nLayer: 4, nHead: 4, nEmbd: 128 } | ||
case 'gpt-nano': | ||
return { nLayer: 3, nHead: 3, nEmbd: 48 } | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
import tf from '@tensorflow/tfjs' | ||
|
||
export default async function evaluate ( | ||
model: tf.LayersModel, | ||
dataset: tf.data.Dataset<{ xs: tf.Tensor, ys: tf.Tensor }> | ||
): Promise<Record<'acc' | 'val_acc' | 'val_loss' | 'val_perplexity', number>> { | ||
let datasetSize = 0 | ||
let totalLoss = 0 | ||
const acc: [number, number] = [0, 0] | ||
|
||
await dataset.map(({ xs, ys }) => { | ||
const logits = model.apply(xs) | ||
if (Array.isArray(logits)) { | ||
throw new Error('model outputed many tensor') | ||
} | ||
if (logits instanceof tf.SymbolicTensor) { | ||
throw new Error('model outputed symbolic tensor') | ||
} | ||
xs.dispose() | ||
|
||
return { logits, ys } | ||
}).mapAsync(async ({ logits, ys }) => { | ||
const loss = (await tf.losses.softmaxCrossEntropy(ys, logits).array()) | ||
if (typeof loss !== 'number') { | ||
throw new Error('got multiple loss') | ||
} | ||
|
||
const accTensor = tf.metrics.categoricalAccuracy(ys, logits) | ||
const accSize = accTensor.shape.reduce((l, r) => l * r, 1) | ||
const accSum = accTensor.sum() | ||
const accSummed = await accSum.array() | ||
if (typeof accSummed !== 'number') { | ||
throw new Error('got multiple accuracy sum') | ||
} | ||
|
||
tf.dispose([ys, logits, accTensor, accSum]) | ||
|
||
return { loss, accSummed, accSize } | ||
}).forEachAsync(({ loss, accSummed, accSize }) => { | ||
datasetSize += 1 | ||
totalLoss += loss | ||
acc[0] += accSummed | ||
acc[1] += accSize | ||
}) | ||
|
||
const loss = totalLoss / datasetSize | ||
|
||
return { | ||
val_loss: loss, | ||
val_perplexity: Math.exp(loss), | ||
acc: acc[0] / acc[1], | ||
val_acc: acc[0] / acc[1] | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
import tf from '@tensorflow/tfjs' | ||
|
||
import { WeightsContainer } from '../..' | ||
import type { Dataset } from '../../dataset' | ||
import { Sink } from '../../utils/event_emitter' | ||
|
||
import type { EpochLogs, Prediction, Sample } from '../model' | ||
import { Model } from '../model' | ||
|
||
import { GPTLMHeadModel } from './model' | ||
|
||
// TODO too big config | ||
interface Config { | ||
modelType: 'gpt-nano' | ||
epochs: number // TODO mv to Task | ||
maxIter: number | ||
batchSize: number | ||
blockSize: number | ||
lr: number | ||
vocabSize: number | ||
maxEvalBatches: number | ||
} | ||
|
||
export class GPT extends Model { | ||
private readonly model: GPTLMHeadModel | ||
|
||
private static readonly batchSize = 4 | ||
private static readonly blockSize = 128 | ||
private static readonly vocabSize = 50258 | ||
|
||
constructor () { | ||
super() | ||
|
||
// TODO sensible defaults? | ||
const config: Config = { | ||
modelType: 'gpt-nano', | ||
epochs: 1, | ||
maxIter: 2, | ||
batchSize: GPT.batchSize, | ||
blockSize: GPT.blockSize, | ||
lr: 0.001, | ||
vocabSize: GPT.vocabSize, | ||
maxEvalBatches: 1 | ||
} | ||
|
||
this.model = new GPTLMHeadModel(config) | ||
} | ||
|
||
override get weights (): WeightsContainer { | ||
return new WeightsContainer(this.model.weights.map((w) => w.read())) | ||
} | ||
|
||
override set weights (ws: WeightsContainer) { | ||
this.model.setWeights(ws.weights) | ||
} | ||
|
||
private convertCharDataset (dataset: Dataset): Dataset { | ||
const batchSize = 4 | ||
const sampleSize = GPT.blockSize + 1 | ||
const chunkSize = sampleSize * batchSize * 2 | ||
|
||
function toUInt16 (low: number, high: number): number { | ||
low &= 0xff | ||
high &= 0xff | ||
return (high << 8) | low | ||
} | ||
|
||
// TODO add support for small last batch | ||
return dataset.batch(chunkSize, false).mapAsync(async (chunk) => { | ||
if (!(chunk instanceof tf.Tensor)) { | ||
throw new Error('chunk is not a Tensor') | ||
} | ||
if (chunk.shape.length !== 2 || chunk.shape[1] !== 1) { | ||
throw new Error('dataset is not a only char') | ||
} | ||
|
||
const buffer = await chunk.buffer() | ||
|
||
const xs = tf.buffer([batchSize, GPT.blockSize], 'int32') | ||
const ys = tf.buffer([batchSize, GPT.blockSize, GPT.vocabSize], 'int32') | ||
|
||
for (let i = 0; i < batchSize; i++) { | ||
for (let j = 0; j < sampleSize; j++) { | ||
const idx = (i * sampleSize + j) * 2 | ||
const low = buffer.get(idx) | ||
const high = buffer.get(idx + 1) | ||
const token = toUInt16(low, high) | ||
if (j < sampleSize - 1) xs.set(token, i, j) | ||
if (j > 0) ys.set(1, i, j - 1, token) | ||
} | ||
} | ||
|
||
return { xs: xs.toTensor(), ys: ys.toTensor() } | ||
}) | ||
} | ||
|
||
override async * train ( | ||
trainingData: Dataset, | ||
validationData?: Dataset, | ||
epochs = 1, | ||
tracker = new Sink() | ||
): AsyncGenerator<EpochLogs, void> { | ||
for (let i = 0; i < epochs; i++) { | ||
let logs: tf.Logs | undefined | ||
|
||
await this.model.fitDataset( | ||
this.convertCharDataset(trainingData), { | ||
epochs: 1, | ||
validationData: validationData !== undefined ? this.convertCharDataset(validationData) : validationData, | ||
callbacks: { | ||
onEpochEnd: (_, cur) => { logs = cur }, | ||
onBatchBegin: () => { tracker.emit('batchBegin', undefined) }, | ||
onBatchEnd: () => { tracker.emit('batchEnd', undefined) } | ||
} | ||
}) | ||
|
||
yield logs | ||
} | ||
} | ||
|
||
override async predict (input: Sample): Promise<Prediction> { | ||
const ret = this.model.predict(input) | ||
if (Array.isArray(ret)) { | ||
throw new Error('prediction yield many Tensors but should have only returned one') | ||
} | ||
|
||
return ret | ||
} | ||
|
||
static deserialize (weights: WeightsContainer): Model { | ||
const model = new GPT() | ||
model.weights = weights | ||
return model | ||
} | ||
|
||
serialize (): WeightsContainer { | ||
return this.weights | ||
} | ||
} |
Oops, something went wrong.