forked from GoogleCloudPlatform/kubernetes-engine-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Pgvector RAG guide (GoogleCloudPlatform#1177)
* add yamls and tf code * fix service type * fix the code * add region tags * add ci step * update ci * ci quickfix
- Loading branch information
1 parent
f313ed0
commit d3b0f9a
Showing
20 changed files
with
863 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
# Copyright 2024 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
name: databases-pgvector-ci.yml | ||
on: | ||
push: | ||
branches: | ||
- main | ||
paths: | ||
- '.github/workflows/databases-pgvector-ci.yml' | ||
- 'databases/postgres-pgvector/**' | ||
pull_request: | ||
paths: | ||
- '.github/workflows/databases-pgvector-ci.yml' | ||
- 'databases/postgres-pgvector/**' | ||
jobs: | ||
job: | ||
runs-on: ubuntu-22.04 | ||
steps: | ||
- uses: actions/checkout@v4 | ||
- name: Validate Cloud Storage module TF for Pgvector | ||
run: | | ||
cd databases/postgres-pgvector/terraform/cloud-storage | ||
terraform init | ||
terraform validate | ||
- name: Build chatbot app container | ||
run: | | ||
cd databases/postgres-pgvector/docker/chatbot | ||
docker build --tag chatbot:1.0 . | ||
- name: Build docs embedder container | ||
run: | | ||
cd databases/postgres-pgvector/docker/embed-docs | ||
docker build --tag embed-docs:1.0 . | ||
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
FROM python:3.12-slim-bookworm | ||
|
||
ENV POSTGRES_HOST gke-pg-cluster-rw.pg-ns | ||
ENV DATABASE_NAME app | ||
ENV COLLECTION_NAME training-docs | ||
RUN apt update && \ | ||
apt install -y --no-install-recommends gcc libc6-dev && \ | ||
rm -rf /var/lib/apt/lists/* | ||
WORKDIR /app | ||
COPY requirements.txt requirements.txt | ||
RUN pip install --no-cache-dir -r requirements.txt | ||
COPY . . | ||
|
||
CMD ["run","/app/chat.py"] | ||
ENTRYPOINT ["streamlit"] | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
# Copyright 2024 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from langchain_google_vertexai import ChatVertexAI | ||
from langchain.prompts import ChatPromptTemplate | ||
from langchain_google_vertexai import VertexAIEmbeddings | ||
from langchain.memory import ConversationBufferWindowMemory | ||
from langchain_community.vectorstores.pgvector import PGVector | ||
import streamlit as st | ||
import os | ||
|
||
# [START gke_databases_postgres_pgvector_docker_chat_model] | ||
vertexAI = ChatVertexAI(model_name="gemini-pro", streaming=True, convert_system_message_to_human=True) | ||
prompt_template = ChatPromptTemplate.from_messages( | ||
[ | ||
("system", "You are a helpful assistant who helps in finding answers to questions using the provided context."), | ||
("human", """ | ||
The answer should be based on the text context given in "text_context" and the conversation history given in "conversation_history" along with its Caption: \n | ||
Base your response on the provided text context and the current conversation history to answer the query. | ||
Select the most relevant information from the context. | ||
Generate a draft response using the selected information. Remove duplicate content from the draft response. | ||
Generate your final response after adjusting it to increase accuracy and relevance. | ||
Now only show your final response! | ||
If you do not know the answer or context is not relevant, response with "I don't know". | ||
text_context: | ||
{context} | ||
conversation_history: | ||
{history} | ||
query: | ||
{query} | ||
"""), | ||
] | ||
) | ||
|
||
embedding_model = VertexAIEmbeddings("textembedding-gecko@001") | ||
# [END gke_databases_postgres_pgvector_docker_chat_model] | ||
|
||
# [START gke_databases_postgres_pgvector_docker_chat_client] | ||
CONNECTION_STRING = PGVector.connection_string_from_db_params( | ||
driver="psycopg2", | ||
host=os.environ.get("POSTGRES_HOST"), | ||
port=5432, | ||
database=os.environ.get("DATABASE_NAME"), | ||
user=os.environ.get("USERNAME"), | ||
password=os.environ.get("PASSWORD"), | ||
) | ||
COLLECTION_NAME = os.environ.get("COLLECTION_NAME"), | ||
|
||
postgres_vector_search = PGVector( | ||
collection_name=COLLECTION_NAME, | ||
connection_string=CONNECTION_STRING, | ||
embedding_function=embedding_model, | ||
) | ||
# [END gke_databases_postgres_pgvector_docker_chat_client] | ||
|
||
def format_docs(docs): | ||
return "\n\n".join([d.page_content for d in docs]) | ||
|
||
st.title("🤖 Chatbot") | ||
if "messages" not in st.session_state: | ||
st.session_state["messages"] = [{"role": "ai", "content": "How can I help you?"}] | ||
|
||
# [START gke_databases_postgres_pgvector_docker_chat_session] | ||
if "memory" not in st.session_state: | ||
st.session_state["memory"] = ConversationBufferWindowMemory( | ||
memory_key="history", | ||
ai_prefix="Bot", | ||
human_prefix="User", | ||
k=3, | ||
) | ||
# [END gke_databases_postgres_pgvector_docker_chat_session] | ||
|
||
# [START gke_databases_postgres_pgvector_docker_chat_history] | ||
for message in st.session_state.messages: | ||
with st.chat_message(message["role"]): | ||
st.write(message["content"]) | ||
# [END gke_databases_postgres_pgvector_docker_chat_history] | ||
|
||
if chat_input := st.chat_input(): | ||
with st.chat_message("human"): | ||
st.write(chat_input) | ||
st.session_state.messages.append({"role": "human", "content": chat_input}) | ||
|
||
found_docs = postgres_vector_search.similarity_search(chat_input) | ||
context = format_docs(found_docs) | ||
|
||
prompt_value = prompt_template.format_messages(name="Bot", query=chat_input, context=context, history=st.session_state.memory.load_memory_variables({})) | ||
with st.chat_message("ai"): | ||
with st.spinner("Typing..."): | ||
content = "" | ||
with st.empty(): | ||
for chunk in vertexAI.stream(prompt_value): | ||
content += chunk.content | ||
st.write(content) | ||
st.session_state.messages.append({"role": "ai", "content": content}) | ||
|
||
st.session_state.memory.save_context({"input": chat_input}, {"output": content}) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
streamlit==1.31.1 | ||
google-cloud-aiplatform==1.41.0 | ||
langchain==0.1.7 | ||
langchain-community==0.0.20 | ||
langchain-google-vertexai==0.0.5 | ||
pgvector==0.2.5 | ||
psycopg2-binary==2.9.9 | ||
arxiv==2.1.0 | ||
pymupdf==1.23.21 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
FROM python:3.12-slim-bookworm | ||
|
||
ENV POSTGRES_HOST gke-pg-cluster-rw.pg-ns | ||
ENV DATABASE_NAME app | ||
ENV COLLECTION_NAME training-docs | ||
RUN apt update && \ | ||
apt install -y --no-install-recommends gcc libc6-dev && \ | ||
rm -rf /var/lib/apt/lists/* | ||
RUN mkdir -p /documents | ||
WORKDIR /app | ||
COPY requirements.txt requirements.txt | ||
RUN pip install --no-cache-dir -r requirements.txt | ||
COPY . . | ||
RUN chmod 765 endpoint.py | ||
EXPOSE 5001 | ||
|
||
CMD ["/app/embedding-job.py"] | ||
ENTRYPOINT ["python"] |
62 changes: 62 additions & 0 deletions
62
databases/postgres-pgvector/docker/embed-docs/embedding-job.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
# Copyright 2024 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from langchain_google_vertexai import VertexAIEmbeddings | ||
from langchain_community.document_loaders import PyPDFLoader | ||
from langchain.text_splitter import RecursiveCharacterTextSplitter | ||
from langchain_community.vectorstores.pgvector import PGVector | ||
from google.cloud import storage | ||
import os | ||
# [START gke_databases_postgres_pgvector_docker_embed_docs_retrieval] | ||
bucketname = os.getenv("BUCKET_NAME") | ||
filename = os.getenv("FILE_NAME") | ||
|
||
storage_client = storage.Client() | ||
bucket = storage_client.bucket(bucketname) | ||
blob = bucket.blob(filename) | ||
blob.download_to_filename("/documents/" + filename) | ||
# [END gke_databases_postgres_pgvector_docker_embed_docs_retrieval] | ||
|
||
# [START gke_databases_postgres_pgvector_docker_embed_docs_split] | ||
loader = PyPDFLoader("/documents/" + filename) | ||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) | ||
documents = loader.load_and_split(text_splitter) | ||
# [END gke_databases_postgres_pgvector_docker_embed_docs_split] | ||
|
||
# [START gke_databases_postgres_pgvector_docker_embed_docs_embed] | ||
embeddings = VertexAIEmbeddings("textembedding-gecko@001") | ||
# [END gke_databases_postgres_pgvector_docker_embed_docs_embed] | ||
|
||
# [START gke_databases_postgres_pgvector_docker_embed_docs_storage] | ||
CONNECTION_STRING = PGVector.connection_string_from_db_params( | ||
driver="psycopg2", | ||
host=os.environ.get("POSTGRES_HOST"), | ||
port=5432, | ||
database=os.environ.get("DATABASE_NAME"), | ||
user=os.environ.get("USERNAME"), | ||
password=os.environ.get("PASSWORD"), | ||
) | ||
COLLECTION_NAME = os.environ.get("COLLECTION_NAME") | ||
|
||
db = PGVector.from_documents( | ||
embedding=embeddings, | ||
documents=documents, | ||
collection_name=COLLECTION_NAME, | ||
connection_string=CONNECTION_STRING, | ||
) | ||
# [END gke_databases_postgres_pgvector_docker_embed_docs_storage] | ||
|
||
print(filename + " was successfully embedded") | ||
print(f"# of vectors = {len(documents)}") | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
# Copyright 2024 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from flask import Flask, jsonify | ||
from flask import request | ||
import logging | ||
import sys,os, time | ||
from kubernetes import client, config, utils | ||
import kubernetes.client | ||
from kubernetes.client.rest import ApiException | ||
|
||
|
||
app = Flask(__name__) | ||
@app.route('/check') | ||
def message(): | ||
return jsonify({"Message": "Hi there"}) | ||
|
||
|
||
@app.route('/', methods=['POST']) | ||
def bucket(): | ||
request_data = request.get_json() | ||
print(request_data) | ||
bckt = request_data['bucket'] | ||
f_name = request_data['name'] | ||
id = request_data['generation'] | ||
kube_create_job(bckt, f_name, id) | ||
return "ok" | ||
|
||
# Set logging | ||
logging.basicConfig(stream=sys.stdout, level=logging.INFO) | ||
|
||
# Setup K8 configs | ||
config.load_incluster_config() | ||
# [START gke_databases_postgres_pgvector_docker_embed_endpoint_job] | ||
def kube_create_job_object(name, container_image, bucket_name, f_name, namespace="pg-ns", container_name="jobcontainer", env_vars={}): | ||
|
||
body = client.V1Job(api_version="batch/v1", kind="Job") | ||
body.metadata = client.V1ObjectMeta(namespace=namespace, name=name) | ||
body.status = client.V1JobStatus() | ||
|
||
template = client.V1PodTemplate() | ||
template.template = client.V1PodTemplateSpec() | ||
env_list = [ | ||
client.V1EnvVar(name="POSTGRES_HOST", value=os.getenv("POSTGRES_HOST")), | ||
client.V1EnvVar(name="DATABASE_NAME", value="app"), | ||
client.V1EnvVar(name="COLLECTION_NAME", value="training-docs"), | ||
client.V1EnvVar(name="FILE_NAME", value=f_name), | ||
client.V1EnvVar(name="BUCKET_NAME", value=bucket_name), | ||
client.V1EnvVar(name="PASSWORD", value_from=client.V1EnvVarSource(secret_key_ref=client.V1SecretKeySelector(key="password", name="gke-pg-cluster-app"))), | ||
client.V1EnvVar(name="USERNAME", value_from=client.V1EnvVarSource(secret_key_ref=client.V1SecretKeySelector(key="username", name="gke-pg-cluster-app"))), | ||
] | ||
|
||
container = client.V1Container(name=container_name, image=container_image, image_pull_policy='Always', env=env_list) | ||
template.template.spec = client.V1PodSpec(containers=[container], restart_policy='Never', service_account='embed-docs-sa') | ||
|
||
body.spec = client.V1JobSpec(backoff_limit=3, ttl_seconds_after_finished=60, template=template.template) | ||
return body | ||
# [END gke_databases_postgres_pgvector_docker_embed_endpoint_job] | ||
def kube_test_credentials(): | ||
try: | ||
api_response = api_instance.get_api_resources() | ||
logging.info(api_response) | ||
except ApiException as e: | ||
print("Exception when calling API: %s\n" % e) | ||
|
||
def kube_create_job(bckt, f_name, id): | ||
container_image = os.getenv("JOB_IMAGE") | ||
name = "docs-embedder" + id | ||
body = kube_create_job_object(name, container_image, bckt, f_name) | ||
v1=client.BatchV1Api() | ||
try: | ||
v1.create_namespaced_job("pg-ns", body, pretty=True) | ||
except ApiException as e: | ||
print("Exception when calling BatchV1Api->create_namespaced_job: %s\n" % e) | ||
return | ||
|
||
if __name__ == '__main__': | ||
app.run('0.0.0.0', port=5001, debug=True) |
15 changes: 15 additions & 0 deletions
15
databases/postgres-pgvector/docker/embed-docs/requirements.txt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
google-cloud-storage==2.14.0 | ||
google-cloud-aiplatform==1.41.0 | ||
langchain==0.1.7 | ||
langchain-community==0.0.20 | ||
langchain-google-vertexai==0.0.5 | ||
pgvector==0.2.5 | ||
psycopg2-binary==2.9.9 | ||
pypdf==3.17.4 | ||
click==8.1.7 | ||
Flask==2.3.3 | ||
itsdangerous==2.1.2 | ||
Jinja2==3.1.3 | ||
MarkupSafe==2.1.5 | ||
Werkzeug==2.3.8 | ||
kubernetes==28.1.0 |
Binary file not shown.
Oops, something went wrong.