-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add figure generation code for 3subj simulation
- Loading branch information
Showing
1 changed file
with
229 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,229 @@ | ||
from pathlib import Path | ||
|
||
import click | ||
import jax.random as jr | ||
import jax.numpy as jnp | ||
from jax import jit, vmap | ||
import matplotlib.pyplot as plt | ||
from fastprogress import progress_bar | ||
from matplotlib.transforms import ScaledTranslation | ||
from tensorflow_probability.substrates import jax as tfp | ||
|
||
import bayes_ca.inference as core | ||
from bayes_ca.prox_grad import pgd_jaxopt | ||
|
||
tfd = tfp.distributions | ||
|
||
|
||
def gibbs_sample_subject_means( | ||
key, subj_obs, sigmasq_obs, global_means, sigmasq_subj, mu_pri, sigmasq_pri, hazard_rates | ||
): | ||
""" """ | ||
num_subjects = subj_obs.shape[0] | ||
effective_sigmasq = 1 / (1 / sigmasq_obs + 1 / sigmasq_subj) | ||
effective_emissions = effective_sigmasq * ( | ||
subj_obs / sigmasq_obs + global_means / sigmasq_subj | ||
) | ||
|
||
_sample_one = lambda key, y: core.gaussian_cp_posterior_sample( | ||
key, y, hazard_rates, mu_pri, sigmasq_pri, effective_sigmasq | ||
)[1] | ||
return vmap(_sample_one)(jr.split(key, num_subjects), effective_emissions) | ||
|
||
|
||
@jit | ||
def step( | ||
key, subj_obs, sigmasq_obs, global_means, sigmasq_subj, mu_pri, sigmasq_pri, hazard_rates | ||
): | ||
""" """ | ||
# Sample new subject means | ||
subj_means = gibbs_sample_subject_means( | ||
key, subj_obs, sigmasq_obs, global_means, sigmasq_subj, mu_pri, sigmasq_pri, hazard_rates | ||
) | ||
result = pgd_jaxopt( # 55m | ||
global_means, subj_means, mu_pri, sigmasq_pri, sigmasq_subj, hazard_rates | ||
) | ||
global_means = result.params | ||
|
||
joint_lp = core.joint_lp( | ||
global_means, | ||
subj_means, | ||
subj_obs, | ||
mu_pri, | ||
sigmasq_pri, | ||
sigmasq_subj, | ||
sigmasq_obs, | ||
hazard_rates, | ||
) | ||
|
||
return global_means, subj_means, joint_lp | ||
|
||
|
||
def stagger_data(key, sigmasq_obs, min_val=-0.40, mid_val=0.30, max_val=0.80): | ||
""" | ||
A three subject model with hardcoded number of time steps and features. | ||
""" | ||
this_key, key = jr.split(key) | ||
|
||
signal_one = jnp.concatenate( | ||
( | ||
jnp.ones((100, 1)) * min_val, | ||
jnp.ones((100, 1)) * mid_val, | ||
jnp.ones((100, 1)) * max_val, | ||
) | ||
) | ||
obs_one = tfd.Normal(signal_one, jnp.sqrt(sigmasq_obs)).sample(seed=this_key) | ||
|
||
signal_two = jnp.concatenate( | ||
( | ||
jnp.ones((100, 1)) * min_val, | ||
jnp.ones((140, 1)) * mid_val, | ||
jnp.ones((60, 1)) * max_val, | ||
) | ||
) | ||
obs_two = tfd.Normal(signal_two, jnp.sqrt(sigmasq_obs)).sample(seed=key) | ||
|
||
this_key, key = jr.split(key) | ||
signal_three = jnp.concatenate( | ||
( | ||
jnp.ones((240, 1)) * (min_val + mid_val) / 2, | ||
jnp.ones((60, 1)) * max_val, | ||
) | ||
) | ||
obs_three = tfd.Normal(signal_three, jnp.sqrt(sigmasq_obs)).sample(seed=key) | ||
|
||
return jnp.stack((signal_one, signal_two, signal_three)), jnp.stack( | ||
(obs_one, obs_two, obs_three) | ||
) | ||
|
||
|
||
def plot_gibbs_sampled( | ||
ax, seed, mu_pri, sigma_pri, sigma_subj, sigma_obs, hazard_rates, n_iters=100 | ||
): | ||
""" """ | ||
# sample data for given obs. noise | ||
key = jr.PRNGKey(seed=seed) | ||
|
||
_, obs = stagger_data(key, sigma_obs**2) | ||
x0 = jnp.mean(obs, axis=0) | ||
|
||
lps = [] | ||
for _ in progress_bar(range(n_iters)): | ||
this_key, key = jr.split(key) | ||
global_means, subj_means, train_lp = step( | ||
this_key, obs, sigma_obs**2, x0, sigma_subj**2, mu_pri, sigma_pri**2, hazard_rates | ||
) | ||
lps.append(train_lp) | ||
|
||
for i in range(3): | ||
ax.plot(subj_means[i], label=f"sampled $\mu^n$ for subj. {i + 1}")[0] | ||
ax.plot(global_means) | ||
return ax | ||
|
||
|
||
@click.command() | ||
@click.option("--seed", default=0, help="") | ||
@click.option("--mu_pri", default=0.0, help="") | ||
@click.option("--sigma_pri", default=1.0, help="") | ||
@click.option("--sigma_subj", default=1.0, help="") | ||
@click.option("--sigma_obs", default=0.25, help="") | ||
@click.option("--num_timesteps", default=300, help="") | ||
@click.option("--hazard_prob", default=0.01, help="") | ||
def main(seed, mu_pri, sigma_pri, sigma_subj, sigma_obs, num_timesteps, hazard_prob): | ||
""" """ | ||
# hardcoded params | ||
max_duration = num_timesteps | ||
hazard_rates = hazard_prob * jnp.ones(max_duration) | ||
hazard_rates = hazard_rates.at[-1].set(1.0) | ||
|
||
key = jr.PRNGKey(seed=seed) | ||
signals, obs = stagger_data(key, sigma_obs**2) | ||
x0 = jnp.mean(obs, axis=0) | ||
|
||
my_file = Path("/path/to/file") | ||
if my_file.is_file(): | ||
pass | ||
else: | ||
lps = [] | ||
for _ in progress_bar(range(7500)): | ||
this_key, key = jr.split(key) | ||
global_means, subj_means, train_lp = step( | ||
this_key, obs, 0.25**2, x0, 2.0**2, 0.0, 1.0**2, hazard_rates | ||
) | ||
lps.append(train_lp) | ||
|
||
_, _, transition_probs, _ = core.gaussian_cp_smoother( | ||
global_means, hazard_rates, mu_pri, sigma_pri**2, sigma_subj**2 | ||
) | ||
|
||
fig, axs = plt.subplot_mosaic( | ||
[["A", "B", "C", "D"], ["E", "F", "G", "H"]], | ||
sharex=True, | ||
sharey=True, | ||
layout="constrained", | ||
# dpi=300, | ||
) | ||
fig.supxlabel("Time") | ||
|
||
for _, ax in axs.items(): | ||
ax.spines[["right", "top"]].set_visible(False) | ||
ax.set_ylim(-1, 1.25) | ||
ax.set_yticks((-1, -0.5, 0, 0.5, 1)) | ||
|
||
for i, (ax, c, title) in enumerate( | ||
zip( | ||
[axs["A"], axs["B"], axs["C"]], | ||
["#59B3A9", "#4298B5", "#007C92"], | ||
["$\mu_{n_1}$", "$\mu_{n_2}$", "$\mu_{n_3}$"], | ||
) | ||
): | ||
ax.plot(signals[i], c=c) | ||
ax.plot(obs[i], ".", color=c, alpha=0.2) | ||
ax.set_title(title, size="x-large") | ||
|
||
axs["A"].text( | ||
0.0, | ||
0.5, | ||
"True Values", | ||
transform=( | ||
axs["A"].transAxes + ScaledTranslation(-50 / 72, +2 / 72, fig.dpi_scale_trans) | ||
), | ||
size="large", | ||
va="center", | ||
rotation=90, | ||
) | ||
axs["D"].plot(jnp.average(signals, axis=0), ls="-.", c="#175E54") | ||
axs["D"].set_title("$\mu_0$", size="x-large") | ||
|
||
for i, (ax, c) in enumerate( | ||
zip([axs["E"], axs["F"], axs["G"]], ["#017E7C", "#016895", "#006B81"]) | ||
): | ||
ax.plot(subj_means[i], c=c) | ||
|
||
axs["E"].text( | ||
0.0, | ||
0.5, | ||
"Sampled Values", | ||
transform=( | ||
axs["E"].transAxes + ScaledTranslation(-50 / 72, +2 / 72, fig.dpi_scale_trans) | ||
), | ||
size="large", | ||
va="center", | ||
rotation=90, | ||
) | ||
axs["H"].plot(global_means, c="#014240") | ||
|
||
fig, ax = plt.subplots() | ||
ax.spines[["left", "top"]].set_visible(False) | ||
ax.get_yaxis().set_visible(False) | ||
ax.imshow(jnp.log(transition_probs.T), aspect="auto", origin="lower", cmap="viridis") | ||
ax.set_title("Transition probabilities") | ||
|
||
sm = plt.cm.ScalarMappable(cmap=plt.cm.viridis) | ||
cbar = fig.colorbar(sm, ax=ax, location="right") | ||
cbar.set_ticks(ticks=[0, 0.5, 1], labels=[0.0, 0.5, 1.0]) | ||
cbar.ax.get_yaxis().labelpad = 15 | ||
|
||
plt.show() | ||
|
||
pass |