Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fetch more external results #97

Merged
merged 1 commit into from
Jan 24, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
The table of contents is too big for display.
Diff view
Diff view
  •  
  •  
  •  
The diff you're trying to view is too large. We only load the first 3000 changed files.
40 changes: 25 additions & 15 deletions load_external.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,14 +68,17 @@ def get_model_parameters_memory(model_info: ModelInfo) -> tuple[int| None, float
return None, None


def get_dim_seq_size(model: ModelInfo) -> tuple[str | None, str | None, int, float]:
def get_dim_seq_size(model: ModelInfo) -> tuple[str | None, str | None, int, float, str | None]:
siblings = model.siblings or []
filenames = [sib.rfilename for sib in siblings]
dim, seq = None, None
similarity_fn_name = None
for filename in filenames:
if re.match(r"\d+_Pooling/config.json", filename):
st_config_path = hf_hub_download(model.id, filename=filename)
dim = json.load(open(st_config_path)).get("word_embedding_dimension", None)
with open(st_config_path) as f:
pooling_config = json.load(f)
dim = pooling_config.get("word_embedding_dimension", None)
break
for filename in filenames:
if re.match(r"\d+_Dense/config.json", filename):
Expand All @@ -87,17 +90,21 @@ def get_dim_seq_size(model: ModelInfo) -> tuple[str | None, str | None, int, flo
if not dim:
dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", None)))
seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", None))))

if "config_sentence_transformers.json" in filenames:
st_config_path = hf_hub_download(model.id, filename="config_sentence_transformers.json")
with open(st_config_path) as f:
st_config = json.load(f)
similarity_fn_name = st_config.get("similarity_fn_name", None)
parameters, memory = get_model_parameters_memory(model)
return dim, seq, parameters, memory
return dim, seq, parameters, memory, similarity_fn_name


def create_model_meta(model_info: ModelInfo) -> ModelMeta | None:
readme_path = hf_hub_download(model_info.id, filename="README.md", etag_timeout=30)
meta = metadata_load(readme_path)
dim, seq, parameters, memory = None, None, None, None
dim, seq, parameters, memory, similarity_fn_name = None, None, None, None, None
try:
dim, seq, parameters, memory = get_dim_seq_size(model_info)
dim, seq, parameters, memory, similarity_fn_name = get_dim_seq_size(model_info)
except Exception as e:
logger.error(f"Error getting model parameters for {model_info.id}, {e}")

Expand All @@ -110,7 +117,12 @@ def create_model_meta(model_info: ModelInfo) -> ModelMeta | None:
for i in range(len(languages)):
if languages[i] is False:
languages[i] = "no"

datasets = meta.get("datasets", None)
if datasets is not None:
datasets = {
d: []
for d in datasets
}
model_meta = ModelMeta(
name=model_info.id,
revision=model_info.sha,
Expand All @@ -122,6 +134,11 @@ def create_model_meta(model_info: ModelInfo) -> ModelMeta | None:
max_tokens=seq,
n_parameters=parameters,
languages=languages,
public_training_code=None,
public_training_data=None,
similarity_fn_name=similarity_fn_name,
use_instructions=None,
training_datasets=datasets,
)
return model_meta

Expand All @@ -139,14 +156,7 @@ def parse_readme(model_info: ModelInfo) -> dict[str, dict[str, Any]] | None:
return
model_index = meta["model-index"][0]
model_name_from_readme = model_index.get("name", None)
orgs = ["Alibaba-NLP", "HIT-TMG", "McGill-NLP", "Snowflake", "facebook", "jinaai", "nomic-ai"]
is_org = any([model_id.startswith(org) for org in orgs])
# There a lot of reuploads with tunes, quantization, etc. We only want the original model
# to prevent this most of the time we can check if the model name from the readme is the same as the model id
# but some orgs have a different naming in their readme
if model_name_from_readme and not model_info.id.endswith(model_name_from_readme) and not is_org:
logger.warning(f"Model name mismatch: {model_info.id} vs {model_name_from_readme}")
return

results = model_index.get("results", [])
model_results = {}
for result in results:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5,18 +5,19 @@
"languages": [],
"loader": null,
"n_parameters": 135193344,
"memory_usage": null,
"max_tokens": 512,
"max_tokens": 512.0,
"embed_dim": 768,
"license": null,
"open_weights": true,
"public_training_data": null,
"public_training_code": null,
"public_training_data": null,
"framework": [
"Sentence Transformers"
],
"reference": null,
"similarity_fn_name": null,
"use_instructions": null,
"zero_shot_benchmarks": null
"training_datasets": {},
"adapted_from": null,
"superseded_by": null
}
Original file line number Diff line number Diff line change
Expand Up @@ -5,18 +5,19 @@
"languages": [],
"loader": null,
"n_parameters": 135193344,
"memory_usage": null,
"max_tokens": 512,
"max_tokens": 512.0,
"embed_dim": 768,
"license": null,
"open_weights": true,
"public_training_data": null,
"public_training_code": null,
"public_training_data": null,
"framework": [
"Sentence Transformers"
],
"reference": null,
"similarity_fn_name": null,
"use_instructions": null,
"zero_shot_benchmarks": null
"training_datasets": {},
"adapted_from": null,
"superseded_by": null
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
{
"dataset_revision": "392ba3f5bcc8c51f578786c1fc3dae648662cb9b",
"task_name": "AlloProfClusteringP2P",
"evaluation_time": null,
"mteb_version": null,
"scores": {
"test": [
{
"hf_subset": "fra-Latn",
"languages": [
"fra-Latn"
],
"v_measure": 0.6234594305243399,
"main_score": 0.6234594305243399
}
]
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
{
"dataset_revision": "392ba3f5bcc8c51f578786c1fc3dae648662cb9b",
"task_name": "AlloProfClusteringS2S",
"evaluation_time": null,
"mteb_version": null,
"scores": {
"test": [
{
"hf_subset": "fra-Latn",
"languages": [
"fra-Latn"
],
"v_measure": 0.2572945498452115,
"main_score": 0.2572945498452115
}
]
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
{
"dataset_revision": "65393d0d7a08a10b4e348135e824f385d420b0fd",
"task_name": "AlloprofReranking",
"evaluation_time": null,
"mteb_version": null,
"scores": {
"test": [
{
"hf_subset": "fra-Latn",
"languages": [
"fra-Latn"
],
"map": 0.26596323297349184,
"mrr": 0.26091629657044163,
"main_score": 0.26596323297349184
}
]
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
{
"dataset_revision": "fcf295ea64c750f41fadbaa37b9b861558e1bfbd",
"task_name": "AlloprofRetrieval",
"evaluation_time": null,
"mteb_version": null,
"scores": {
"test": [
{
"hf_subset": "fra-Latn",
"languages": [
"fra-Latn"
],
"map_at_1": 0.00345,
"map_at_10": 0.00934,
"map_at_100": 0.01191,
"map_at_1000": 0.013419999999999998,
"map_at_20": 0.0102,
"map_at_3": 0.006689999999999999,
"map_at_5": 0.00753,
"mrr_at_1": 0.00345,
"mrr_at_10": 0.00934,
"mrr_at_100": 0.01191,
"mrr_at_1000": 0.013419999999999998,
"mrr_at_20": 0.0102,
"mrr_at_3": 0.006689999999999999,
"mrr_at_5": 0.00753,
"ndcg_at_1": 0.00345,
"ndcg_at_10": 0.013839999999999998,
"ndcg_at_100": 0.03151,
"ndcg_at_1000": 0.09014,
"ndcg_at_20": 0.01692,
"ndcg_at_3": 0.00785,
"ndcg_at_5": 0.00941,
"precision_at_1": 0.00345,
"precision_at_10": 0.00289,
"precision_at_100": 0.00124,
"precision_at_1000": 0.00063,
"precision_at_20": 0.00205,
"precision_at_3": 0.00374,
"precision_at_5": 0.00302,
"recall_at_1": 0.00345,
"recall_at_10": 0.02893,
"recall_at_100": 0.12435,
"recall_at_1000": 0.62867,
"recall_at_20": 0.04102,
"recall_at_3": 0.01123,
"recall_at_5": 0.015110000000000002,
"main_score": 0.013839999999999998
}
]
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
{
"dataset_revision": "1399c76144fd37290681b995c656ef9b2e06e26d",
"task_name": "AmazonReviewsClassification",
"evaluation_time": null,
"mteb_version": null,
"scores": {
"test": [
{
"hf_subset": "fra-Latn",
"languages": [
"None"
],
"accuracy": 0.32661999999999997,
"f1": 0.32443152253731844,
"main_score": 0.32661999999999997
}
]
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
{
"dataset_revision": "5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59",
"task_name": "BSARDRetrieval",
"evaluation_time": null,
"mteb_version": null,
"scores": {
"test": [
{
"hf_subset": "fra-Latn",
"languages": [
"fra-Latn"
],
"map_at_1": 0.0,
"map_at_10": 0.0,
"map_at_100": 0.00062,
"map_at_1000": 0.00077,
"map_at_20": 0.0,
"map_at_3": 0.0,
"map_at_5": 0.0,
"mrr_at_1": 0.0,
"mrr_at_10": 0.0,
"mrr_at_100": 0.00062,
"mrr_at_1000": 0.00077,
"mrr_at_20": 0.0,
"mrr_at_3": 0.0,
"mrr_at_5": 0.0,
"ndcg_at_1": 0.0,
"ndcg_at_10": 0.0,
"ndcg_at_100": 0.00484,
"ndcg_at_1000": 0.01054,
"ndcg_at_20": 0.0,
"ndcg_at_3": 0.0,
"ndcg_at_5": 0.0,
"precision_at_1": 0.0,
"precision_at_10": 0.0,
"precision_at_100": 0.00027,
"precision_at_1000": 8e-05,
"precision_at_20": 0.0,
"precision_at_3": 0.0,
"precision_at_5": 0.0,
"recall_at_1": 0.0,
"recall_at_10": 0.0,
"recall_at_100": 0.02703,
"recall_at_1000": 0.07658,
"recall_at_20": 0.0,
"recall_at_3": 0.0,
"recall_at_5": 0.0,
"main_score": 0.02703
}
]
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
{
"dataset_revision": "e06ebbbb123f8144bef1a5d18796f3dec9ae2915",
"task_name": "HALClusteringS2S",
"evaluation_time": null,
"mteb_version": null,
"scores": {
"test": [
{
"hf_subset": "fra-Latn",
"languages": [
"fra-Latn"
],
"v_measure": 0.1377084465510841,
"main_score": 0.1377084465510841
}
]
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
{
"dataset_revision": "b5d54f8f3b61ae17845046286940f03c6bc79bc7",
"task_name": "MLSUMClusteringP2P",
"evaluation_time": null,
"mteb_version": null,
"scores": {
"test": [
{
"hf_subset": "fra-Latn",
"languages": [
"None"
],
"v_measure": 0.4543375637260015,
"main_score": 0.4543375637260015
}
]
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
{
"dataset_revision": "b5d54f8f3b61ae17845046286940f03c6bc79bc7",
"task_name": "MLSUMClusteringS2S",
"evaluation_time": null,
"mteb_version": null,
"scores": {
"test": [
{
"hf_subset": "fra-Latn",
"languages": [
"None"
],
"v_measure": 0.45205646487969753,
"main_score": 0.45205646487969753
}
]
}
}
Loading
Loading