The open source code for our paper "edge2vec: Learning Node Representation Using Edge Semantics".
Install in development mode with::
$ git clone https://github.com/RoyZhengGao/edge2vec.git
$ cd edge2vec
$ pip install -e .
The dataset we offer for test is data/data.csv
. The data contains four
columns, which refer to Source ID, Target ID, Edge Type, Edge ID. And
columns are separated by space ' '.
For unweighted graph, please see unweighted_graph.txt. The four columns are Source ID, Target ID, Edge Type, Edge ID. And columns are separated by space ' '. For weighted graph, please see weighted_graph.txt. The five columns are Source ID, Target ID, Edge Type, Edge Weight, Edge ID. And columns are separated by space ' '.
There are two steps for running the code. First, to calculate transition
matrix in heterogeneous networks, run edge2vec-transition
from the shell:
$ edge2vec-transition \
--input data/data.csv \
--output data/matrix.txt \
--type_size 3 \
--em_iteration 5 \
--walk-length 3
The output is matrix.txt
, which stores the edge transition matrix.
Second, run edge2vec
to the node embeddings via biased random walk.
To use it from the shell:
$ edge2vec \
--input data/data.csv \
--matrix data/matrix.txt \
--output data/vector.txt \
--dimensions 128 \
--walk-length 3 \
--p 1 \
--q 1
The output is the node embedding file vector.txt
.
Data repository for medical dataset in the link: http://ella.ils.indiana.edu/~gao27/data_repo/edge2vec%20vector.zip or https://figshare.com/articles/edge2vec_vector_zip/8097539 (It is a re-computed version so the evaluation output may be a little bit different with the paper reported results.)
if you use the code, please cite:
- Gao, Zheng, Gang Fu, Chunping Ouyang, Satoshi Tsutsui, Xiaozhong Liu, and Ying Ding. "edge2vec: Learning Node Representation Using Edge Semantics." arXiv preprint arXiv:1809.02269 (2018).
The code is released under BSD 3-Clause License.
- Zheng Gao - [email protected]