The source code of Paper: Deep learning for localized rapid deformation detection and InSAR phase unwrapping
Authors: Zhipeng Wu, Student Member, IEEE, Teng Wang, Yingjie Wang, Robert Wang, Senior Member, IEEE, Daqing Ge
This is the source code for training and testing PUNet/DDNet, implemented in the PyTorch framework version 1.8.0 based on Python 3.6.
For code to generate the training dataset, see InterferogramSimulator.
Assume you have Python 3.6 installed.
-
Clone the repo:
git clone https://github.com/Wu-Patrick/Deformation-Monitoring-Dev.git cd Deformation-Monitoring-Dev
-
Install dependencies:
pip install -r requirements.txt
- Input arguments: (see full input arguments via
python train.py --help
):
usage: train.py [-h] [--model MODEL] [--dataRootDir DATAROOTDIR]
[--dataset DATASET] [--input_size INPUT_SIZE]
[--num_workers NUM_WORKERS] [--num_channels NUM_CHANNELS]
[--max_epochs MAX_EPOCHS] [--random_mirror RANDOM_MIRROR]
[--lr LR] [--batch_size BATCH_SIZE] [--optim {sgd,adam}]
[--poly_exp POLY_EXP] [--cuda CUDA] [--gpus GPUS]
[--resume RESUME] [--savedir SAVEDIR] [--logFile LOGFILE]
- Run:
python train.py
- Input arguments: (see full input arguments via
python test.py --help
):
usage: test.py [-h] [--model MODEL] [--dataRootDir DATAROOTDIR]
[--dataset DATASET] [--num_workers NUM_WORKERS]
[--batch_size BATCH_SIZE] [--checkpoint CHECKPOINT]
[--cuda CUDA] [--gpus GPUS]
- Run:
python test.py
If you use this code, please cite the following:
@ARTICLE{9583229,
author={Wu, Zhipeng and Wang, Teng and Wang, Yingjie and Wang, Robert and Ge, Daqing},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={Deep Learning for the Detection and Phase Unwrapping of Mining-Induced Deformation in Large-Scale Interferograms},
year={2022},
volume={60},
number={},
pages={1-18},
doi={10.1109/TGRS.2021.3121907}}
The code can only be used for personal academic research testing.