Skip to content

dev-sungman/covid-challenge

Repository files navigation

COVID-19 Challenge

Root

|── README.md

|── environment_setup.sh

|── conver_testformat.py

|── nnunet

|── nnUNet_raw_data_base (download)

|── nnUNet_preprocessed (download)

|── nnUNet_trained_models (If you train the model, it will be made automatically)

Setting Environment

source ./environment_setup.sh

Training

New arguments

  • '$save_name': your trained results will be saved here.
  • --use_nnblock: if you want to use 3D nnblock, please use this argument
  • --use_ws : if you want to use weight standardization, please use this argument
  • --use_skip_attention : if you want to use skip attention, please use this argument
CUDA_VISIBLE_DEVICES=1 python nnunet/run/run_training.py 3d_fullres nnUNetTrainerV2 Task000_MYTASK all '$save_name' --use_nnblock --use_ws -w genesis_nnunet_luna16_006.model

If you run above the script, you can find your training results:

nnUNet_trained_models/nnUNet/3d_fullres/Task000_MYTASK/nnUNetTrainer....v2.1/$save_name/all

Inference

  • You have to rename your .model, .pkl files. Please change the name of the model and pickle files named 'model_best.model', 'model_best.model.pkl' by following the below conditions.

    model : model_final_checkpoint.model

    pickle : model_final_checkpoint.model.pkl

CUDA_VISIBLE_DEVICES=1 python nnunet/inference/predict_simple.py -i nnUNet_raw_data_base/nnUNet_raw_data/Task000_MYTASK/imagesTs -o '$output_path' -t Task000_MYTASK -m 3d_fullres -f all
  • If you don't want to rename your model, please add '-chk model_best' argument
  • $save_name : if you trained with '$save_name' argument, you have to input --name='$save_name' argument in inference phase.
CUDA_VISIBLE_DEVICES=1 python nnunet/inference/predict_simple.py -i nnUNet_raw_data_base/nnUNet_raw_data/Task000_MYTASK/imagesTs -o '$output_path' -t Task000_MYTASK -m 3d_fullres -f all -chk model_best --name='$save_name'

Convert Data (for submission)

If you finished the inference, you can check a new folder named $output_path and $folder_name.

python convert_testformat.py --data_path='$output_path' --save_path '$folder_name'

Then, you can find submission folder in your '$output_path'.

please compress it and submit.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages